



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学习正、余弦定理应当掌握的几类重要应用问题学习正、余弦定理的目的主要是解决解三角形问题,这是学习正、余弦定理的重点之处。而重中之重则是利用正、余弦定理解决实际问题。利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识。一、确定两地间的距离问题ABCP例1.某海轮以30海里/小时的速度航行,在A点测得海面上油井P在南偏东,向北航行40分钟后到达B点,测得油井P在南偏东,海轮改为北偏东的航向再行驶80分钟到达C点,求P、C间的距离解:如图,在ABP中,AB = 30= 20,APB =,BAP =,由正弦定理,得:=,即=,解得BP =在BPC中,BC = 30= 40,由已知PBC =,PC = (海里)所以P、C间的距离为海里点评:该题是在准确理解方位角的前提下,合理运用正弦定理把问题解决。因此,用正弦定理解有关应用问题时,要注意问题中的一些名称、术语,如仰角、俯角、视角、象限角、方位角等二、解决航行中的测量问题西北南东ABC3015例2某舰艇测得灯塔在它的东15北的方向,此舰艇以30海里/小时的速度向正东前进,30分钟后又测得灯塔在它的东30北。若此灯塔周围10海里内有暗礁,问此舰艇继续向东航行有无触礁的危险?解析:如图舰艇在A点处观测到灯塔S在东15北的方向上;舰艇航行半小时后到达B点,测得S在东30北的方向上。 在ABC中,可知AB=300.5=15,ABS=150,ASB=15,由正弦定理得BS=AB=15,过点S作SC直线AB,垂足为C,则SC=15sin30=7.5。这表明航线离灯塔的距离为7.5海里,而灯塔周围10海里内有暗礁,故继续航行有触礁的危险。ABC北4515点评:有关斜三角形的实际问题,其解题的一般步骤是:(1)准确理解题意,分清已知与所求,尤其要理解应用题中的有关名词和术语;(2)画出示意图,并将已知条件在图形中标出;(3)分析与所研究问题有关的一个或几个三角形,通过合理运用正弦定理和余弦定理求解。三、判断运动物体的运行情况例3如图,甲船在A处,乙船在A处的南偏东45方向,距A有9n mile并以20n mile/h的速度沿南偏西15方向航行,若甲船以28n mile/h的速度航行,应沿什么方向,用多少h能尽快追上乙船?解析:设用t h,甲船能追上乙船,且在C处相遇。在ABC中,AC=28t,BC=20t,AB=9,设ABC=,BAC=。=1804515=120。根据余弦定理,(4t3)(32t+9)=0,解得t=,t=(舍)。AC=28=21 n mile,BC=20=15 n mile。根据正弦定理,得,又=120,为锐角,=arcsin,又,arcsin,甲船沿南偏东arcsin的方向用h可以追上乙船。点评:航海问题常涉及到解三角形的知识,本题中的 ABC、AB边已知,另两边未知,但他们都是航行的距离,由于两船的航行速度已知,所以,这两边均与时间t有关。这样根据余弦定理,可列出关于t的一元二次方程,解出t的值。四确定最佳设计方案例4.某工厂生产主要产品后,留下大量中心角为,半径为a的扇形边角料,现要废物利用,从中剪裁下巨型毛坯,要求矩形面积尽可能大,请问如何裁剪?方案一:如图1,矩形有两个顶点在半径OA上,设AOP =,则PM = asin,扇形中心角为,PQO =,由正弦定理,得:=,即PQ =asin(),矩形的MPQR的面积为:S=PMPQ =asinsin() =aa(1) =a,当=时,cos() = 1,S取得最大值a方案二:如图2,矩形有两个顶点分别在扇形的两条半径OA、OB上,设AOM =,MRA =,MRO =,由正弦定理,得:=,即RM = 2asin,又=,OR = 2asin(),矩形的MPQR的面积为:S= MRPQ = 4asinsin() = 2a2a(1) = (2)a即在此情况下,AOM =时,可求出M点,然后作出MPQR面积为最大APBMRQABPMRQ图1图2由于SS=a(2)a=(12)0,所以第一种方案能使裁出的矩形面积最大,即AOP =,使P取在AB弧中点,分别向扇形的一条半径作垂线及平行线得到矩形MPQR,即为最大矩形点评:该题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高端别墅室内外翻新施工劳务承包协议
- 2025年商务用车租赁事故责任界定与赔偿细则合同
- 2025年智能工厂厂房租赁与区域产业升级扶贫合作协议
- 2025年度城市污水处理厂升级改造服务协议
- 2025年智能物流平台集装箱货运代理服务合同
- 2025年都市餐饮品牌加速器场地租赁及创业辅导服务合同
- 2025年税务师职业资格考试模拟卷及标准答案发布
- 2025年度科研仪器定制开发与采购一体化服务合同
- 2025年员工离职前综合评价与待遇执行合同
- 2025年城市共同配送服务合同范本
- 《螺纹的种类和应用》课件
- 医学一等奖《白血病》课件
- 高空作业车专项应急预案
- 发现普洱茶的第一个医学实验报告
- 全自动血液细胞分析仪参数
- (完整版)过去完成时ppt
- 1输变电工程施工质量验收统一表式(线路工程)
- 养老护理员(技师、高级技师)知识考试复习题库(含答案)
- 学校安全“日管控、周排查、月总结”工作制度
- 机械原理课程设计15吨压片机设计
- 2023年五四青年节演讲比赛PPT担负青年使命弘扬五四精神PPT课件(带内容)
评论
0/150
提交评论