已阅读5页,还剩40页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
31.3空间向量的数量积运算,1.掌握空间向量夹角的概念及表示方法,掌握两个向量的数量积概念、性质和计算方法及运算规律2.掌握两个向量的数量积的主要用途,会用它解决立体几何中一些简单的问题.,1.空间向量的数量积运算(重点)2.利用空间向量的数量积求夹角及距离(难点)3.空间向量数量积的运算律(易错点),数量积,|a|b|cosa,b,abba,(ab)c,ab,1空间向量的夹角,AOB,a,b,0,,互相垂直,ab,2空间向量的数量积,(ab),ba,abac,答案:A,答案:D,1.空间向量共线定理,若,则点P、A、B共线的充要条件是xy1。,2.空间向量共面定理,对空间任一点O和不共线三点A、B、C,若,则点P在平面ABC内的充要条件是xyz1.,若向量不共线,则向量与共面的充要条件是:存在惟一的有序实数对(x,y),使.,3.利用空间向量共线定理和共面定理,可以解决立体几何中的共点、共线、共面和平行等问题,这是一种向量方法.,例题讲解,例1用向量方法证明三垂线定理:平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.,例2:用向量方法证明直线和平面垂直的判定定理:,已知m,n是平面内的两条相交直线,直线lm,ln,求证:l,小结作业,1.由于空间任意两个向量都可以转化为共面向量,所以空间向量的数量积运算与平面向量的数量积运算的理论体系完全一样.,2.对于空间线线垂直,线面垂直问题可以转化为向量的数量积为零来处理,同时,利用向量的数量积还可以计算夹角和距离.,已知空间四边形OABC中,AOBBOCAOC,且OAOBOC.M、N分别是OA、BC的中点,G是MN的中点求证:OGBC.,题后感悟(1)向量垂直只对非零向量有意义,在证明或判断ab时,须指明a0,b0;(2)证明两直线的垂直可以转化为证明这两直线的方向向量垂直,将两个方向向量表示为几个已知向量a,b,c的线性形式,然后利用数量积说明两直线的方向向量垂直,进而转化为直线垂直,3.如图所示,已知正三棱柱ABCA1B1C1的各条棱长都相等,M是侧棱CC1的中点求证:AB1BM.,2数量积的理解(1)书写向量的数量积时,只能用符号ab,而不能用符号ab,也不能用ab.(2)两向量的数量积,其结果是个实数,而不是向量,它的值为两向量的模与两向量夹角的余弦值的乘积,其符号由夹角的余弦值决定(3)当a0时,由ab0不能推出b一定是零向量,这是因为任一个与a垂直的非零向量b,都有ab0.,3空间向量数量积的运算律的注意事项(1)要准确区分两向量的数量积与数乘向量、实数与实数的乘积之间的差异(2)数量积的运算不满足消去律,即abbc推不出ac.(3)数量积的运算不满足结合律,即(ab)c不一定等于a(bc),4空间向量数量积的应用空间向量的数量积与向量的模和夹角有关,可用于解决很多立体几何问题,如:(1)求空间中两点间的距离或线段长度,可以理解为求相应线段所对应的向量的模;(2)求空间中两条直线的夹角(特别是两条异面直线所成的角),可以理解为求这两条直线所对应的两个向
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 亲属借款没协议合同
- 代理公司注销协议书
- 区域医疗平台协议书
- 冻库门更换合同范本
- 农村划地建房协议书
- 武汉经济技术开发区轨道办及部分产业园区2025年下半年工作人员招考易考易错模拟试题(共500题)试卷后附参考答案
- 广西西林县公开招考聘用事业单位工作人员171人易考易错模拟试题(共500题)试卷后附参考答案
- 校企合作基地协议书
- 代理企业协议书范本
- 公司报税外包协议书
- 抖音直播培训方案
- 2025宁夏回族自治区大学生乡村医生专项计划招聘工作人员13人考试笔试模拟试题及答案解析
- 学校食堂满意度测评及管理方案
- 【生】植物的生殖和发育 课件-2025-2026学年新教材北师大版八年级上册生物
- 湖南省普通高中毕业生登记表
- 完整版全国行政区域身份证代码表(EXCEL版)TextMarkTextMark
- 后勤服务人员职业道德规范
- 第一单元 (作业设计)部编版语文四年级下册
- 蜜蜂养殖技术课件
- 辅酶Q10幻灯课件
- 现代汉语 句型 句式 句类课件
评论
0/150
提交评论