




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
12.2三角形全等的判定(第1课时),课件说明,本课是在学生已经学习了全等三角形的概念和性质的基础上,探究三角形全等的条件,并以“边边边”条件为例,理解、掌握三角形全等的判定.,学习目标:1构建三角形全等条件的探索思路,体会研究几何问题的方法2探索并理解“边边边”判定方法,会用“边边边”判定方法证明三角形全等3会用尺规作一个角等于已知角,了解作图的道理学习重点:构建三角形全等条件的探索思路,“边边边”判定方法,课件说明,A=A,AB=AB,已知ABCABC,找出其中相等的边与角:,思考满足这六个条件可以保证ABCABC吗?,创设情境,导入新知,B=B,BC=BC,C=C,AC=AC,追问1当满足一个条件时,ABC与ABC全等吗?,动脑思考,分类辨析,思考如果只满足这些条件中的一部分,那么能保证ABCABC吗?,思考如果只满足这些条件中的一部分,那么能保证ABCABC吗?,两个条件,追问2当满足两个条件时,ABC与ABC全等吗?,动脑思考,分类辨析,思考如果只满足这些条件中的一部分,那么能保证ABCABC吗?,三个条件,追问3当满足三个条件时,ABC与ABC全等吗?满足三个条件时,又分为几种情况呢?,动脑思考,分类辨析,画法:(1)画线段BC=BC;(2)分别以B、C为圆心,BA、BC为半径画弧,两弧交于点A;(3)连接线段AB,A.,动手操作,验证猜想,先任意画出一个ABC,再画出一个ABC,使AB=AB,BC=BC,AC=AC把画好的ABC剪下,放到ABC上,它们全等吗?,边边边公理:三边对应相等的两个三角形全等简写为“边边边”或“SSS”.,动脑思考,得出结论,思考作图的结果反映了什么规律?你能用文字语言和符号语言概括吗?,在ABC与ABC中,,ABCABC(SSS),判断两个三角形全等的推理过程,叫做证明三角形全等.,用符号语言表达:,动脑思考,得出结论,证明:D是BC中点,BD=DC在ABD与ACD中,,ABDACD(SSS),应用所学,例题解析,例如图,有一个三角形钢架,AB=AC,AD是连接点A与BC中点D的支架求证:ABDACD,作法:(1)以点O为圆心,任意长为半径画弧,分别交OA,OB于点C、D;,已知:AOB求作:AOB=AOB,用尺规作一个角等于已知角,应用所学,例题解析,O,D,B,C,A,作法:(2)画一条射线OA,以点O为圆心,OC长为半径画弧,交OA于点C;,已知:AOB求作:AOB=AOB,用尺规作一个角等于已知角,应用所学,例题解析,O,C,A,O,D,B,C,A,作法:(3)以点C为圆心,CD长为半径画弧,与第2步中所画的弧交于点D;,已知:AOB求作:AOB=AOB,用尺规作一个角等于已知角,应用所学,例题解析,O,D,C,A,O,D,B,C,A,作法:(4)过点D画射线OB,则AOB=AOB,已知:AOB求作:AOB=AOB,用尺规作一个角等于已知角,应用所学,例题解析,O,D,B,C,A,O,D,B,C,A,作法:(1)以点O为圆心,任意长为半径画弧,分别交OA,OB于点C、D;(2)画一条射线OA,以点O为圆心,OC长为半径画弧,交OA于点C;(3)以点C为圆心,CD长为半径画弧,与第2步中所画的弧交于点D;(4)过点D画射线OB,则AOB=AOB,已知:AOB求作:AOB=AOB,用尺规作一个角等于已知角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农业水土保持机理课件
- 剥脱性骨软骨炎课件
- Beherbergungsgewerbe in München-外文版培训课件(2025.9)
- 别碰开水课件
- 农业安全业务培训课件
- 农业农机安全生产培训课件
- 初始安全员培训课件
- 内训师课件题材
- 先正达安全培训成绩课件
- 23《生于忧患死于安乐》(公开课一等奖创新教学设计)统编版语文八年级上册
- 无人机培训课件
- 2025辽宁沈阳副食集团所属企业招聘3人考试参考题库及答案解析
- 储罐区的安全题库及答案解析
- 交大入党测试题及答案
- 培训如何开早会的课件
- 2025年河北沧州市中心医院、沧州博施康养集团公开招聘辅助岗工作人员113名考试参考试题及答案解析
- 消防员抗洪抢险知识培训课件
- 精选幼儿园体能大循环方案
- 全国中学生物理竞赛复赛实验考查
- 例谈小组合作学习在小学英语教学中的有效开展(讲座)课件
- 部编版五年级道德与法治上册第3课《主动拒绝烟酒与毒品》优秀课件【最新】
评论
0/150
提交评论