




已阅读5页,还剩41页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第九章,第五节,一、一个方程所确定的隐函数及其导数,二、方程组所确定的隐函数组及其导数,隐函数的求导方法,1)方程在什么条件下才能确定隐函数.,例如,方程,C0时,不能确定隐函数,2)方程能确定隐函数时,研究其连续性,可微性及求导方法问题.,本节讨论:,一、一个方程所确定的隐函数及其导数,什么是隐函数?,显函数:,隐函数:,二元方程,一元隐函数,如,有时可以将隐函数显化:,定理1.设函数,则方程,单值连续函数y=f(x),并有连续,(隐函数求导公式),定理证明从略,仅就求导公式推导如下:,具有连续的偏导数;,的某邻域内可唯一确定一个,在点,的某一邻域内满足,满足条件,导数,两边对x求导,在,的某邻域内,则,例1,方法一(公式法),例1,方法二(直接求导法),方程两边对x求导,把y视为函数。,例1,方法三(微分法),方程两边同时微分,若F(x,y)的二阶偏导数也都连续,二阶导数:,则还可求隐函数的,由一个三元方程确定的隐函数,二元显函数:,二元隐函数:,三元方程,二元隐函数:,如,可以显化,定理2.,若函数,的某邻域内具有连续偏导数;,则方程,在点,并有连续偏导数,定一个单值连续函数z=f(x,y),定理证明从略,仅就求导公式推导如下:,满足,在点,满足:,某一邻域内可唯一确,两边对x求偏导,同样可得,则,例2,方法一(公式法),例2,方法二(求偏导),方程两边对x求偏导,把z视为函数,y视为常数。,例2,方法三(微分法),方程两边同时微分,例2,解,令,则,练习,解:,二、方程组所确定的隐函数组及其导数,隐函数存在定理还可以推广到方程组的情形.,由F、G的偏导数组成的行列式,称为F、G的雅可比行列式.,以两个方程确定两个隐函数的情况为例,即,雅可比,定理3.,的某一邻域内具有连续偏,设函数,则方程组,的单值连续函数,且有偏导数公式:,在点,的某一邻域内可唯一确定一组满足条件,满足:,导数;,(P85),有隐函数组,则,两边对x求导得,设方程组,在点P的某邻域内,解的公式,故得,系数行列式,同样可得,例3.设,解:,方程组两边对x求导,并移项得,求,练习:求,答案:,由题设,故有,例3.设,求,解法2(微分法),方程组两边同时微分,用Gramer法则,显然,利用全微分法求偏导数更简便,例4.设函数,在点(u,v)的某一,1)证明函数组,(x,y)的某一邻域内,2)求,解:1)令,对x,y的偏导数.,在与点(u,v)对应的点,邻域内有连续的偏导数,且,唯一确定一组单值、连续且具有,连续偏导数的反函数,式两边对x求导,得,则有,由定理3可知结论1)成立.,2)求反函数的偏导数.,从方程组解得,例4的应用:计算极坐标变换,的反变换的导数.,同样有,所以,由于,内容小结,1.隐函数(组)存在定理,2.隐函数(组)求导方法,方法1.利用复合函数求导法则直接计算;,方法2.利用微分形式不变性;,方法3.代公式.,思考与练习,设,求,提示:,解法2.利用全微分形式不变性同时求出各偏导数.,第六节,由dy,dz的系数即可得,作业P892,8,9,10(1);(3),备用题,分别由下列两式确定:,又函数,有连续的一阶偏导数,1.设,解:两个隐函数方程两边对x求导,得,(考研),解得,因此,2.设,是由方程,和,所确定的函数,求,解法1分别在各方程两端对x求导,得,(考研),解法2微分法.,对各方程两边分别求微分:,化简得,消去,可得,二元线性代数方程组解的公式,解:,雅可比(18041851),德国数学家.,他在数学方面最主要,的成就是和挪威数学家阿贝儿相互独,地奠定了椭圆函数论的基础.,他对行列,式理论也作了奠基性的工作.,在偏微分,方程的研究中引进了“雅可比行列式”,并应用在微积,分中.,他的工作
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中级健身教练专业资格认证考试模拟题及答案
- 2025年人力资源师考试模拟题及备考指南
- 2025年精密温控节能设备项目合作计划书
- 2025年脚踏自行车及其零件合作协议书
- 2025年智能计量终端项目建议书
- 2025年电容器用钽粉合作协议书
- 抛物线课件教学课件
- 2025年建筑材料及制品专用生产机械合作协议书
- 抗菌药物教学课件
- 2025年安徽省蚌埠市龙子湖区中考数学三模试卷(含答案)
- 2025年市级科技馆招聘笔试重点
- 2025年度房屋拆迁补偿安置房买卖协议
- 2025西电考试题及答案
- 南昌市小学二年级 2025-2026 学年数学秋季开学摸底测试卷(人教版)含解读答案
- 2025年部编版新教材语文九年级上册教学计划(含进度表)
- 食堂工作人员食品安全培训
- (高清版)DB11∕T 2440-2025 学校食堂病媒生物防制规范
- 战场急救知识
- GB/T 7324-2010通用锂基润滑脂
- 吨焊接滚轮架主动滚轮架设计机械CAD图纸
- 高压燃气管道带压不停输封堵改管技术
评论
0/150
提交评论