




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,第三节,定积分的换元法和,分部积分法,第五章,二、定积分的分部积分法,不定积分,一、定积分的换元法,换元积分法,分部积分法,定积分,换元积分法,分部积分法,一、定积分的换元法,定理1.设函数,单值函数,满足:,1),2)在,上,证:所证等式两边被积函数都连续,因此积分都存在,且它们的原函数也存在.,是,的原函数,因此有,则,则,说明:,1)当,即区间换为,定理1仍成立.,2)必需注意换元必换限,原函数中的变量不必代回.,3)换元公式也可反过来使用,即,配元不换限,例1.计算,解:令,则,原式=,且,例2.计算,解:令,则,原式=,且,例3.,证:,(1)若,(2)若,偶倍奇零,二、定积分的分部积分法,定理2.,则,证:,例4.计算,解:,原式=,例5.证明,证:令,n为偶数,n为奇数,则,令,则,由此得递推公式,于是,而,故所证结论成立.,内容小结,基本积分法,换元积分法,分部积分法,换元必换限配元不换限边积边代限,思考与练习,1.,提示:令,则,2.设,解法1,解法2,对已知等式两边求导,思考:,若改题为,提示:两边求导,得,得,3.设,求,解:,(分部积分),备用题,1.证明,证:,是以为周期的函数.,是以为周期的周期函数.,解:,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 消防知识培训课件
- 观光车安全知识培训方案课件
- Unit 1 Cultural Heritage Reading and Thinking 教学设计-2024-2025学年高中英语人教版(2019)必修第二册
- 二 追寻生命的起源教学设计-2025-2026学年高中历史人民版必修第三册-人民版2004
- 3.2 有理数的乘法与除法说课稿-2025-2026学年初中数学青岛版2012七年级上册-青岛版2012
- 西餐自助基本知识培训
- 西餐点餐基础知识培训
- 第12课 木字底说课稿-2025-2026学年小学书法练习指导四年级下册北师大版
- 9.设计毕业典礼(教案)-人民版劳动六年级下册
- (2025年标准)护坡包工协议书
- 三电延保合同协议
- 连锁药店质量管理制度
- 农产品销售公司岗位职责及团队架构
- 离婚协议书正规打印电子版(2025年版)
- 解读化妆品监督管理条例
- 能源管理体系及节能知识培训课件
- 美团骑手2025年度骑手权益保障与法律法规遵守合同4篇
- 化工设备基础知识培训课件
- 《纵隔病变的ct诊断》课件
- 2024年中国创新方法大赛考试题库(含答案)
- 《毒虫咬伤》课件
评论
0/150
提交评论