假设检验(完整版)_第1页
假设检验(完整版)_第2页
假设检验(完整版)_第3页
假设检验(完整版)_第4页
假设检验(完整版)_第5页
免费预览已结束,剩余100页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

统计假设检验,假设检验,第一节、假设检验概述第二节、总体平均数的假设检验(Z、T)第三节、总体比率的假设检验(P)第四节、总体方差的假设检验(卡方、F),第一节假设检验概述,1、假设检验的基本思想2、假设检验的步骤3、两类错误和假设检验的规则,RonaldAylmerFisher,英国著名的统计学家,遗传学家,现代数理统计的奠基人之一。他在抽样分布理论、相关回归分析、多元统计分析、最大似然估计理论,方差分析和假设检验有很多的建树。,女士品茶,20世纪20年代后期在英国剑桥一个夏日的下午,一群大学的绅士和他们的夫人以及来访者,正围坐在户外的桌旁享用下午的奶茶。奶茶一般是由牛奶和茶混合而成的,调制时候可以先倒茶后倒牛奶,也可以先倒牛奶后倒茶。这时候,一名女士说她能区分这两种不同做法的调制出来的奶茶。那么如何检验这位女士的说法?为此Fisher进行了研究,从而提出了假设检验的思想。,1、推广素质教育以后,教学效果是不是有所提高?(教育统计)2、某种新胃药是否比以前更有效?(卫生统计)3、醉酒驾车认定为刑事犯罪后是否交通事故会减少?(司法统计)4、如何检测某批种子的发芽率?(农业统计)5、海关工作人员如何判定某批产品能够通关?(海关统计)6、红楼梦后40回作者的鉴定(文学统计)。7、民间借贷的利率为多少?(金融统计)8、兴奋剂检测(体育统计),假设检验的应用,1、假设检验的基本思想为研究某山区的成年男子的脉搏均数是否高于一般成年男子脉搏均数,某医生在一山区随机抽查了25名健康成年男子,得其脉搏均数x为74.2次/分,标准差为6.0次/分。根据大量调查已知一般健康成年男子脉搏均数为72次/分,能否据此认为该山区成年的脉搏均数高于一般成年男子的脉搏均数0?问题1:造成这25名男子脉搏均数高于一般男子的原因是什么?,问题2、怎样判断以上哪个原因是成立的?若x与0接近,其差别可用抽样误差解释,x来自于0;若x与0相差甚远,其差别不宜用抽样误差解释,则怀疑x不属于0。,由资料已知样本均数与总体均数不等,原因有二:(1)两者非同一总体,即两者差异由地理气候等因素造成,也就是可以说高山成年人的脉搏比一般人的要高;(2)两者为同一总体,即两者差异由抽样误差造成。,检验如下假设:原假设:高山成年人脉搏与一般人的脉搏没有差异:=0备择假设:高山成年人脉搏与一般人的脉搏有差异:0,假设检验的基本概念,概念事先对总体参数或分布形式作出某种假设然后利用样本信息来以一定的概率判断原假设是否成立参数检验和非参数检验(第8章的内容)作用一般是对有差异的数据进行检验,判断差异是否显著(概率)如果通过了检验,不能拒绝原假设,说明没有显著差异,那么这种差异是由抽样造成的如果不能通过检验,则拒绝原假设,说明有显著差异,这种差异是由系统误差造成的.证伪不能存真.,第一节假设检验概述,1、假设检验的基本思想2、假设检验的步骤3、两类错误和假设检验的规则,二、假设检验的步骤,1、根据具体的问题,建立原假设和备择假设2、构造一个合适的统计量,计算其抽样分布(均值检验)3、给定显著水平和确定临界值。显著水平通常取0.1、0.05或0.01。在确定了显著水平后,根据统计量的分布就可以确定找出接受区域和拒绝区域的临界值。4、根据样本的值计算统计量的数值并作出决策。如果统计量的值落在拒绝域中,那么就没有通过检验,说明有显著差异,拒绝原假设。如果统计量的值落在接受域中,通过了假设检验,说明这种差异是由于抽样造成,这个样本不能拒绝原假设。,1、原假设与备择假设,原假设(nullhypothesis):一般研究者想收集证据予以反对的假设。表示为H0备择假设(alternativehypothesis):一般研究者想收集证据予以支持的假设。表示为H1由于假设检验中只有在小概率事件发生的情况下才拒绝原假设,因此在假设检验过程中是保护原假设的。,有三种形式:(1)双侧检验H0:0,H1:0(不等,有差异);(2)左侧检验H0:0,H1:0(提高,增加)采用哪种形式要根据实际问题。,某种饮料的易拉罐瓶的标准容量为335毫升,为对生产过程进行控制,质量监测人员定期对某个分厂进行检查,确定这个分厂生产的易拉罐是否符合标准要求。如果易拉罐的平均容量大于或小于335毫升,则表明生产过程不正常。试陈述用来检验生产过程是否正常的原假设和备择假设,解:研究者想收集证据予以证明的假设应该是“生产过程不正常”。建立的原假设和备择假设为H0:335mlH1:335ml,消费者协会接到消费者投诉,指控品牌纸包装饮料存在容量不足,有欺骗消费者之嫌。包装上标明的容量为250毫升。消费者协会从市场上随机抽取50盒该品牌纸包装饮品进行假设检验。试陈述此假设检验中的原假设和备择假设。,解:消费者协会的意图是倾向于证实饮料厂包装饮料小于250ml。建立的原假设和备择假设为H0:250mlH1:255,决策:拒绝H0,结论:样本提供的证据表明:该天生产的饮料与标准有显著差异,可以认为换工人后容量增加了。,显著性水平和拒绝域(右侧检验),显著性水平和拒绝域(右侧检验),第一节假设检验概述,1、假设检验的基本思想2、假设检验的步骤3、两类错误和假设检验的规则,三、两类错误和假设检验的规则,1.第类错误(弃真错误)原假设为真时拒绝原假设第类错误的概率记为被称为显著性水平2.第类错误(取伪错误)原假设为假时未拒绝原假设第类错误的概率记为(Beta),H0:无罪,假设检验中的两类错误,假设检验就好像一场审判过程,统计检验过程,H0:药品为真药,假设检验中的两类错误之间的关系,宁可错杀三千,不可放过一个。,H0:某次面试为好机会,错误和错误的关系,你不能同时减少两类错误!只能增加样本容量。,和的关系就像翘翘板,小就大,大就小,四、置信区间与假设检验之间的关系1、根据置信度1-构造置信区间,如果统计量落在置信区间中,那么接受原假设,如果不在置信区间中,那么拒绝原假设。2、根据显著水平,可以构建置信度为1-的置信区间。,一个总体的检验,第二节总体均值的检验一、单个总体均值的检验(ZT)二、两个总体均值检验(等方差、异方差)三、两个非正态总体均值之差的检验(成对检验),一、单个正态总体均值的检验,确定检验统计量的因素:1、样本容量的大小2、总体分布形状3、总体方差是否已知主要情形(6种)正态总体(方差未知,且为小样本,1种)正态总体(方差已知,小样本,1种)大样本(不论总体是否正态,不论方差是否已知,4种)三种假设检验的形式(双侧,左侧和右侧),(一)总体平均数的检验(小样本,正态,方差已知),1.假定条件总体服从正态分布小样本(n1020,决策:在0.05的水平上拒绝H0,结论:样本提供的证据表明:该天生产的饮料与标准有显著差异,可以认为试用寿命提高了。,总体均值的检验(z检验)(P值的计算与应用),第1步:进入Excel表格界面,直接点击“f(x)”(粘贴函数)第2步:在函数分类中点击“统计”,并在函数名的菜单下选择“NORMSDIST”,然后确定第3步:将z的绝对值2.4录入,得到的函数值为0.9918P值=1-0.9918=0.0082P值小于,故拒绝H0,总体均值的检验(z检验)(P值的图示),【例3】一种罐装饮料采用自动生产线生产,每罐的容量是255ml,标准差为5ml,服从正态分布。换了一批工人后,质检人员在某天生产的饮料中随机抽取了16罐进行检验,测得每罐平均容量为252.8ml。取显著性水平=0.05,检验该天生产的饮料容量是否减少了?,左侧检验,H0:255H1:255,决策:在0.05水平上拒绝H0,结论:样本提供的证据表明:该天生产的饮料与标准有显著差异,可以认为换工人后容量减少了。,总体均值的检验(z检验)(P值的计算与应用),第1步:进入Excel表格界面,直接点击“f(x)”(粘贴函数)第2步:在函数分类中点击“统计”,并在函数名的菜单下选择“NORMSDIST”,然后确定第3步:将z的绝对值-1.76录入,得到的函数值为0.039204P值=0.039204P值小于,故拒绝H0,总体均值的检验(z检验)(P值的图示),总体均值的检验规则(正态,小样本,方差已知),练习一,(二)总体平均数检验(小样本,正态,方差未知*),1.假定条件总体服从正态分布小样本(n5,决策:拒绝H0,结论:认为肥皂的平均厚度偏高。,P值=0.031972=0.05,故不拒绝H0,(三)总体均值的检验(大样本),1.假定条件正态总体或非正态总体大样本(n30)使用z检验统计量2已知:2未知:,总体均值的检验规则(大样本情形),某大学规定学生每天参加体育锻炼的时间为25分钟。现学校为了调查学生是否达到锻炼标准,从该校学生中随机抽取100人,调查到他们平均每天参加体育锻炼的时间为24分钟,标准为5分钟。试以5的显著水平检验该校学生平均每天的锻炼时间是否达到规定。,右侧检验.H0:25,H1:25,=0.05,n=100,决策:拒绝H0,结论:样本提供的证据表明:学生的锻炼时间没有达到规定。,总体均值的检验(z检验)(P值的计算与应用),第1步:进入Excel表格界面,直接点击“f(x)”(粘贴函数)第2步:在函数分类中点击“统计”,并在函数名的菜单下选择“NORMSDIST”,然后确定第3步:将z的绝对值2录入,得到的函数值为0.9925P值=(1-0.9925)=0.0075P值远远小于,故拒绝H0,【例】一种罐装饮料采用自动生产线生产,每罐的容量是255ml,标准差为5ml。为检验每罐容量是否符合要求,质检人员在某天生产的饮料中随机抽取了40罐进行检验,测得每罐平均容量为255.8ml。取显著性水平=0.05,检验该天生产的饮料容量是否符合标准要求?,双侧检验.H0:=255,H1:255,=0.05,n=40,决策:不拒绝H0,结论:样本提供的证据表明:该天生产的饮料符合标准要求,总体均值的检验(z检验)(P值的计算与应用),第1步:进入Excel表格界面,直接点击“f(x)”(粘贴函数)第2步:在函数分类中点击“统计”,并在函数名的菜单下选择“NORMSDIST”,然后确定第3步:将z的绝对值1.01录入,得到的函数值为0.8437P值=2*0.8437-1=0.6874P值远远大于,故不能拒绝H0,总体均值的检验(大样本),【例】一种机床加工的零件尺寸绝对平均误差为1.35mm。生产厂家现采用一种新的机床进行加工以期进一步降低误差。为检验新机床加工的零件平均误差与旧机床相比是否有显著降低,从某天生产的零件中随机抽取50个进行检验。利用这些样本数据,检验新机床加工的零件尺寸的平均误差与旧机床相比是否有显著降低?(=0.01),左侧检验,总体均值的检验(大样本)(例题分析),H0:1.35H1:5,样本比率可用正态分布来近似(大样本)检验的z统计量,0为假设的总体比率,总体比率的检验规则,总体比率的检验,【例】一种以休闲和娱乐为主题的杂志,声称其读者群中有80%为女性。为验证这一说法是否属实,某研究部门抽取了由200人组成的一个随机样本,发现有146个女性经常阅读该杂志。分别取显著性水平0.05和0.01,检验该杂志读者群中女性的比率是否为80%?它们的值各是多少?,双侧检验,H0:=80%,H1:80%,=0.05,拒绝H0(P=0.013328=0.01)该杂志的说法属实,1.假定条件两个总体都服从二项分布可以用正态分布来近似检验统计量检验H0:1-2=0检验H0:1-2=d0,二、两个总体比率之差的检验,两个总体比率之差的检验规则,两个总体比率之差的检验(例题分析),【例】一所大学准备采取一项学生在宿舍上网收费的措施,为了解男女学生对这一措施的看法是否存在差异,分别抽取了200名男学生和200名女学生进行调查,其中的一个问题是:“你是否赞成采取上网收费的措施?”其中男学生表示赞成的比率为27%,女学生表示赞成的比率为35%。调查者认为,男学生中表示赞成的比率显著低于女学生。取显著性水平=0.05,样本提供的证据是否支持调查者的看法?,两个总体比率之差的检验(例题分析),H0:1-2=0H1:1-20=0.05n1=200,n2=200临界值(c):,检验统计量:,决策:,结论:,拒绝H0(P=0.041837=0.05),样本提供的证据支持调查者的看法,两个总体比率之差的检验(例题分析),【例】有两种方法生产同一种产品,方法1的生产成本较高而次品率较低,方法2的生产成本较低而次品率则较高。管理人员在选择生产方法时,决定对两种方法的次品率进行比较,如方法1比方法2的次品率低8%以上,则决定采用方法1,否则就采用方法2。管理人员从方法1生产的产品中随机抽取300个,发现有33个次品,从方法2生产的产品中也随机抽取300个,发现有84个次品。用显著性水平=0.01进行检验,说明管理人员应决定采用哪种方法进行生产?,两个总体比率之差的检验(例题分析),H0:1-28%H1:1-28%=0.01n1=300,n2=300临界值(c):,检验统计量:,决策:,结论:,拒绝H0(P=1.22E-15=0.05),方法1的次品率显著低于方法2达8%,应采用方法1进行生产,第四节、总体方差的检验,1、一个样本与总体方差的比较卡方检验,2、两个样本方差的比较F检验,第四节、总体方差的检验,检验一个总体的方差或标准差假设总体近似服从正态分布使用2分布检验统计量,总体方差的检验规则,啤酒生产企业采用自动生产线灌装啤酒,每瓶的装填量为640ml,但由于受某些不可控因素的影响,每瓶的装填量会有差异。此时,不仅每瓶的平均装填量很重要,装填量的方差同样很重要。如果方差很大,会出现装填量太多或太少的情况,这样要么生产企业不划算,要么消费者不满意。假定生产标准规定每瓶装填量的标准差不应超过和不应低于4ml。企业质检部门抽取了10瓶啤酒进行检验,得到的样本标准差为s=3.8ml。试以0.10的显著性水平检验装填量的标准差是否符

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论