2422切线长定理_第1页
2422切线长定理_第2页
2422切线长定理_第3页
2422切线长定理_第4页
2422切线长定理_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

24.2.2切线长定理,1、如何过O外一点P画出O的切线?,2、这样的切线能画出几条?,如下左图,借助三角板,我们可以画出PA是O的切线。,画一画,o,o,p,1.连结OP,2.以OP为直径作O,与O交于A、B两点。,A,B,即直线PA、PB为O的切线,如图,已知O外一点P,你能用尺规过点P作O的切线吗?,通过作图你能发现什么呢?,观察,实验,1.过圆外一点作圆的切线可以作两条,2.点A和点B关于直线OP对称,说明,经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长。,切线长是一条线段,o,p,A,B,如图,PA、PB是O的切线,A、B为切点。如果连结OA、OB、OP,图中的PA与PB,APO与BPO有什么关系?,探究,PA、PB是O的切线,A、B为切点,OAPA,OBPB,又OAOB,OPOP,RtAOPRtBOP,PAPB,APOBPO,结论,切线长定理:,从圆外一点可以引圆的两条切线,切线长相等,这一点和圆心的连线平分两条切线的夹角。,符号语言,PA、PB是O的切线,A、B为切点,PAPB,APOBPO,猜想,如图,若连接AB,则OP与AB有什么关系?,分析,PA、PB是O的切线,A、B为切点,PAPB,APOBPO,OPAB,且OP平分AB,C,D,归纳,从圆外一点引圆的两条切线,圆心和这一点的连线垂直平分切点所成的弦;平分切点所成的弧。,(2)已知OA=3cm,OP=6cm,则APB=,P,A,B,C,O,60,(4)OP交O于M,则,,M,牛刀小试,(3)若P=70,则AOB=,110,(1)若PA=4、PM=2,求圆O的半径OA,OA=3,已知:如图,PA、PB是O的切线,切点分别是A、B,Q为AB上一点,过Q点作O的切线,交PA、PB于E、F点,已知PA=12cm,求PEF的周长。,易证EQ=EA,FQ=FB,PA=PB,PE+EQ=PA=12cm,PF+FQ=PB=PA=12cm,周长为24cm,牛刀再试,例1,已知,如图,PA、PB是O的两条切线,A、B为切点.直线OP交O于点D、E,交AB于C.(1)写出图中所有的垂直关系;(2)写出图中所有的全等三角形.(3)如果PA=4cm,PD=2cm,求半径OA的长.,A,O,C,D,P,B,E,解:,(1)OAPA,OBPB,OPAB,(2)OAPOBP,OCAOCBACPBCP.,(3)设OA=xcm,则PO=PD+x=2+x(cm),在RtOAP中,由勾股定理,得,PA2+OA2=OP2,即42+x2=(x+2)2,解得x=3cm,所以,半径OA的长为3cm.,利用切线长定理进行计算,P,A,B,C,如图,P为O外一点,PA、PB分别切O于A、B两点,OP交O于C,若PA6,PC2,求O的半径OA及两切线PA、PB的夹角。,解:连接OA、AC,则OAAP,在RtAOP中,设OAx则OPx2,OA2PA2OP2,即x262(x2)2,解得x2,即OAOC2,OP4,在RtAOP中,OP2OA,APO30,PA、PB是O的切线,APB2APO60,O的半径为2,两切线的夹角为60,利用切线长定理进行证明,A,B,C,D,E,O,2,1,例2,如图,已知:在ABC中,B90,O是AB上一点,以O为圆心,OB为半径的圆交AB于点E,切AC于点D。求证:DEOC,证明:连接,,为的半径,是的切线,C是的切线,是切点,,,是的直径,,即,思考,如图所示是一张三角形的铁皮,如何在它上面剪下一块圆形的用料,并且使圆的面积尽可能大呢?,A,B,C,A,B,C,M,D,N,I,结论,与三角形各边都相切的圆叫做三角形的内切圆;三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心;这个三角形叫做圆的外切三角形。,明确,1.一个三角形有且只有一个内切圆;,2.一个圆有无数个外切三角形;,3.三角形的内心就是三角形三条内角平分线的交点;,4.三角形的内心到三角形三边的距离相等。,例1ABC的内切圆O与BC、CA、AB分别相切于点D、E、F,且AB=9cm,BC=14cm,CA=13cm,求AF、BD、CE的长.,解:,设AF=x(cm),BD=y(cm),CEz(cm),AF=4(cm),BD=5(cm),CE=9(cm).,O与ABC的三边都相切,AFAE,BDBF,CECD,B,D,E,F,O,C,A,如图,ABC的内切圆的半径为r,ABC的周长为l,求ABC的面积S.,解:设ABC的内切圆与三边相切于D、E、F,,连结OA、OB、OC、OD、OE、OF,,则ODAB,OEBC,OFAC.,SABCSAOBSBOCSAOC,ABODBCOEACOF,lr,设ABC的三边为a、b、c,面积为S,则ABC的内切圆的半径r,结论,探究,三角形的内切圆的有关计算,A,B,C,E,D,F,O,如图,RtABC中,C90,BCa,ACb,ABc,O为RtABC的内切圆.求:RtABC的内切圆的半径r.,设AD=x,BE=y,CEr,O与RtABC的三边都相切,ADAF,BEBF,CECD,解:设RtABC的内切圆与三边相切于D、E、F,连结OD、OE、OF则OAAC,OEBC,OFAB。,结论,A,B,C,E,D,F,O,如图,RtABC中,C90,BC3,AC4,O为RtABC的内切圆.(1)求RtABC的内切圆的半径.(2)若移动点O的位置,使O保持与ABC的边AC、BC都相切,求O的半径r的取值范围。,设AD=x,BE=y,CEr,O与RtABC的三边都相切,ADAF,BEBF,CECD,解:(1)设RtABC的内切圆与三边相切于D、E、F,连结OD、OE、OF则OAAC,OEBC,OFAB。,解得,r1,在RtABC中,BC3,AC4,AB5,由已知可得四边形ODCE为正方形,CDCEOD,RtABC的内切圆的半径为1。,(2)如图所示,设与BC、AC相切的最大圆与BC、AC的切点分别为B、D,连结OB、OD,则四边形BODC为正方形。,A,B,O,D,C,OBBC3,半径r的取值范围为0r3,点评,几何问题代数化是解决几何问题的一种重要方法。,基础题:,1.既有外接圆,又内切圆的平行四边形是_.2.直角三角形的外接圆半径为5cm,内切圆半径为1cm,则此三角形的周长是_.3.O是边长为2cm的正方形ABCD的内切圆,EF切O于P点,交AB、BC于E、F,则BEF的周长是_.,E,F,H,G,正方形,22cm,2cm,解:点O是ABC的内心,,BOC=180(13),=180(2535),4.如图,在ABC中,点O是内心,若ABC=50,ACB=70,求BOC的度数,=120,同理3=4=ACB=70=35,1=2=ABC=50=25,5.小红家的锅盖坏了,为了配一个锅盖,需要测量锅盖的直径(锅边所形成的圆的直径),而小红家只有一把长20cm的直尺,根本不够长,怎么办呢?小红想了想,采取以下方法:首先把锅平放到墙根,锅边刚好靠到两墙,用直尺紧贴墙面量得MA的长,即可求出锅盖的直径,请你利用图乙,说明她这样做的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论