已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.2.1几类不同增长的函数模型,第二课时幂、指、对函数模型增长的差异性,问题提出,1.指数函数y=ax(a1),对数函数y=logax(a1)和幂函数y=xn(n0)在区间(0,+)上的单调性如何?,2.利用这三类函数模型解决实际问题,其增长速度是有差异的,我们怎样认识这种差异呢?,探究(一):特殊幂、指、对函数模型的差异,对于函数模型:y=2x,y=x2,y=log2x其中x0.,思考2:对于函数模型y=2x和y=x2,观察下列自变量与函数值对应表:,当x0时,你估计函数y=2x和y=x2的图象共有几个交点?,思考4:在同一坐标系中这三个函数图象的相对位置关系如何?请画出其大致图象.,思考3:设函数f(x)=2x-x2(x0),你能用二分法求出函数f(x)的零点吗?,思考5:根据图象,不等式log2x2xx2和log2x0,在区间(0,+)上ax是否恒大于xn?ax是否恒小于xn?,思考2:当a1,n0时,在区间(0,+)上,ax与xn的大小关系应如何阐述?,思考3:一般地,指数函数y=ax(a1)和幂函数y=xn(n0)在区间(0,+)上,其增长的快慢情况是如何变化的?,思考4:对任意给定的a1和n0,在区间(0,+)上,logax是否恒大于xn?logax是否恒小于xn?,思考5:随着x的增大,logax增长速度的快慢程度如何变化?xn增长速度的快慢程度如何变化?,思考6:当x充分大时,logax(a1)xn与(n0)谁的增长速度相对较快?,思考7:一般地,对数函数y=logax(a1)和幂函数y=xn(n0)在区间(0,+)上,其增长的快慢情况如何是如何变化的?,思考8:对于指数函数y=ax(a1),对数函数y=logax(a1)和幂函数y=xn(n0),总存在一个x0,使xx0时,ax,logax,xn三者的大小关系如何?,思考9:指数函数y=ax(0a1),对数函数y=logax(0a1)和幂函数y=xn(n0),在区间(0,+)上衰减的快慢情况如何?,理论迁移,例在某种金属材料的耐高温实验中,温度y(C)随着时间t(分钟)的变化情况,由微机处理后显示出如下
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基层医疗机构危重症护理学科建设的探索
- 慢性肾病患者的内瘘护理与动静脉穿刺技巧
- 精神分裂症患者鼻饲给药的护理难点及应对
- 心血管病中医护理:中药内服外用协同
- 饮食护理:普通饮食与特殊饮食
- 康复护理中的疼痛管理策略与临床实践
- 婴幼儿退热护理细节指南(03岁)
- 糖尿病心理护理:家属如何给予有效支持
- 灸法护理疗效观察与评估标准
- 糖尿病视网膜病变的全程护理管理
- 高山滑雪知到智慧树章节测试课后答案2024年秋哈尔滨体育学院
- 统编人教版五年级语文上册第23课《鸟的天堂》精美课件
- 公路冬季施工安全培训
- 2024中药行业现状与未来趋势白皮书
- 中等职业技术学校电子商务3+2专业专业人才培养方案
- 《教育向美而生-》读书分享课件
- 《烹饪美学》课件-项目二 烹饪色彩
- 中国法律史-第三次平时作业-国开-参考资料
- DZ∕T 0227-2010 地质岩心钻探规程(正式版)
- 中国历史文化知识竞赛100题汇编
- 行政伦理学教程(第四版)课件 第3章 行政理性与行政价值
评论
0/150
提交评论