




已阅读5页,还剩33页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三种不同性质的分布,总体分布样本分布抽样分布,总体中各元素的观察值所形成的分布分布通常是未知的可以假定它服从某种分布,总体分布(populationdistribution),一个样本中各观察值的分布也称经验分布当样本容量n逐渐增大时,样本分布逐渐接近总体的分布,样本分布(sampledistribution),样本统计量的概率分布,是一种理论分布在重复选取容量为n的样本时,由该统计量的所有可能取值形成的相对频数分布随机变量是样本统计量样本均值,样本比例,样本方差等结果来自容量相同的所有可能样本提供了样本统计量长远而稳定的信息,是进行推断的理论基础,也是抽样推断科学性的重要依据,抽样分布(samplingdistribution),抽样分布的形成过程(samplingdistribution),样本统计量的抽样分布(一个总体参数推断时),样本均值的抽样分布样本比例的抽样分布抽样方差的抽样分布,样本均值的抽样分布,在重复选取容量为n的样本时,由样本均值的所有可能取值形成的相对频数分布一种理论概率分布推断总体均值的理论基础,样本均值的抽样分布,样本均值的抽样分布(例题分析),【例】设一个总体,含有4个元素(个体),即总体单位数N=4。4个个体分别为x1=1,x2=2,x3=3,x4=4。总体的均值、方差及分布如下,均值和方差,样本均值的抽样分布(例题分析),现从总体中抽取n2的简单随机样本,在重复抽样条件下,共有42=16个样本。所有样本的结果为,样本均值的抽样分布(例题分析),计算出各样本的均值,如下表。并给出样本均值的抽样分布,样本均值的分布与总体分布的比较(例题分析),=2.52=1.25,总体分布,样本均值的抽样分布与中心极限定理,当总体服从正态分布N(,2)时,来自该总体的所有容量为n的样本的均值x也服从正态分布,x的数学期望为,方差为2/n。即xN(,2/n),中心极限定理(centrallimittheorem),中心极限定理:设从均值为,方差为2的一个任意总体中抽取容量为n的样本,当n充分大时,样本均值的抽样分布近似服从均值为、方差为2/n的正态分布,中心极限定理(centrallimittheorem),x的分布趋于正态分布的过程,抽样分布与总体分布的关系,样本均值的数学期望样本均值的方差重复抽样不重复抽样,样本均值的抽样分布(数学期望与方差),样本均值的抽样分布(数学期望与方差),比较及结论:1.样本均值的均值(数学期望)等于总体均值2.样本均值的方差等于总体方差的1/n,均值的抽样标准误差,所有可能的样本均值的标准差,测度所有样本均值的离散程度也称标准误差小于总体标准差计算公式为,样本比例的抽样分布,总体(或样本)中具有某种属性的单位与全部单位总数之比不同性别的人与全部人数之比合格品(或不合格品)与全部产品总数之比总体比例可表示为样本比例可表示为,比例(proportion),在重复选取容量为的样本时,由样本比例的所有可能取值形成的相对频数分布一种理论概率分布当样本容量很大时,样本比例的抽样分布可用正态分布近似推断总体比例的理论基础,样本比例的抽样分布,样本比例的数学期望样本比例的方差重复抽样不重复抽样,样本比例的抽样分布(数学期望与方差),样本方差的抽样分布,样本方差的分布,在重复选取容量为的样本时,由样本方差的所有可能取值形成的相对频数分布对于来自正态总体的简单随机样本,则比值的抽样分布服从自由度为(n-1)的2分布,即,由阿贝(Abbe)于1863年首先给出,后来由海尔墨特(Hermert)和卡皮尔逊(KPearson)分别于1875年和1900年推导出来设,则令,则Y服从自由度为1的2分布,即当总体,从中抽取容量为n的样本,则,2分布(2distribution),分布的变量值始终为正分布的形状取决于其自由度n的大小,通常为不对称的正偏分布,但随着自由度的增大逐渐趋于对称期望为:E(2)=n,方差为:D(2)=2n(n为自由度)可加性:若U和V为两个独立的2分布随机变量,U2(n1),V2(n2),则U+V这一随机变量服从自由度为n1+n2的2分布,2分布(性质和特点),c2分布(图示),6.4样本统计量的抽样分布(两个总体参数推断时),6.4.1两个样本均值之差的抽样分布6.4.2两个样本比例之差的抽样分布6.4.3两个样本方差比的抽样分布,两个样本均值之差的抽样分布,两个总体都为正态分布,即,两个样本均值之差的抽样分布服从正态分布,其分布的数学期望为两个总体均值之差方差为各自的方差之和,两个样本均值之差的抽样分布,两个样本均值之差的抽样分布,两个样本比例之差的抽样分布,两个总体都服从二项分布分别从两个总体中抽取容量为n1和n2的独立样本,当两个样本都为大样本时,两个样本比例之差的抽样分布可用正态分布来近似分布的数学期望为方差为各自的方差之和,两个样本比例之差的抽样分布,两个样本方差比的抽样分布,两个样本方差比的抽样分布,两个总体都为正态分布,即X1N(1,12),X2N(2,22)从两个总体中分别抽取容量为n1和n2的独立样本两个样本方差比的抽样分布,服从分子自由度为(n1-1),分母自由度为(n2-1)的F分布,即,由统计学家费希尔(R.A.Fisher)提出的,以其姓氏的第一个字母来命名则设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 长治市人民医院产科急诊护理应急考核
- 佳木斯市人民医院输血传染病检测考核
- 鹤岗市中医院维护操作患者评估考核
- 长治市人民医院针灸推拿科感染控制考核
- 大同市中医院临床路径管理与变异分析试题
- 重庆市中医院泪道手术技术专项考核
- 齐齐哈尔市中医院环境改造设计考核
- 中国杀菌剂原药项目商业计划书
- 中国苯乙醚项目投资计划书
- 中国氟橡胶硫化剂项目商业计划书
- 新生儿护理及母乳喂养课件
- IEC 62368-1标准解读-中文
- 2023版小学数学课程标准
- 慢性阻塞性肺疾病急性加重围出院期管理与随访指南(2024年版)解读
- 《建筑施工技术》课件-土方开挖及边坡支护
- 特殊教育作业册(上册)
- 6.1+友谊的真谛++课件-2024-2025学年统编版道德与法治七年级上册
- Office高效办公智慧树知到期末考试答案章节答案2024年西安欧亚学院
- DL∕T 5210.4-2018 电力建设施工质量验收规程 第4部分:热工仪表及控制装置
- 南洋理工校训的英文
- HG+20231-2014化学工业建设项目试车规范
评论
0/150
提交评论