




已阅读5页,还剩93页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一元二次函数,2018,1,2020/5/21,1.在某一问题中,保持的量叫常量,可以取的量,叫做变量.,不变,不同数值,2.函数:在同一变化过程中,有两个变量x和y,如果对于x的每个值,y都有_与之对应,我们就把y叫做x的函数,其中x叫做自变量.如果自变量x取a时,y的值是b,就把b叫做x=a时的函数值.,唯一确定的值,3.平面直角坐标系:在平面内画两条互相垂直而且有公共原点的数轴,水平的一条叫做x轴或横轴,习惯上取向的方向为正方向,的一条叫做或,取向上的方向为正方向,这就组成了平面直角坐标系.,y轴,纵轴,右,铅直,2,2020/5/21,一次函数:若两个变量x、y之间的关系可以表示成y=kx+b(k,b为常数,k0)的形式,则称y是x的一次函数。(x为自变量,y为因变量)当b=0时,称ykx是x的正比例函数,知识点回顾:,3,2020/5/21,知识回顾,1、一次函数的图像有何特征?,一次函数的图像是一条。当时,y随x的增大而增大;当时,y随x的增大而减小。,直线,k0,k0(在对称轴的右侧)时,y随着x的增大而增大.,当x0时,抛物线y=ax2在x轴的上方(除顶点外),它的开口向上,并且向上无限伸展;当a0时,在对称轴的左侧,y随着x的增大而减小;在对称轴右侧,y随着x的增大而增大.当x=0时函数y的值最小.当a0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x增大而减小,当x=0时,函数y的值最大.,二次函数y=ax2的性质,归纳,26,2020/5/21,做一做,(1)抛物线y=2x2的顶点坐标是,对称轴是,在对称轴侧,y随着x的增大而增大;在对称轴侧,y随着x的增大而减小,当x=时,函数y的值最小,最小值是,抛物线y=2x2在x轴的方(除顶点外).,(2)抛物线在x轴的方(除顶点外),在对称轴的左侧,y随着x的;在对称轴的右侧,y随着x的,当x=0时,函数y的值最大,最大值是,当x0时,y0.,(0,0),y轴,右,左,0,0,上,下,增大而增大,增大而减小,0,不等于,27,2020/5/21,例题与练习,例1.在同一直角坐标系中画出函数y=x2和y=2x2的图象,解:(1)列表,(2)描点,(3)连线,8,2,0.5,0,0.5,2,4.5,8,4.5,8,-2,-1.5,-1,-0.5,0,0.5,1,1.5,2,4.5,2,0.5,0,0.5,2,4.5,8,28,2020/5/21,函数y=x2,y=2x2的图象与函数y=x2(图中虚线图形)的图象相比,有什么共同点和不同点?,观察,共同点:,不同点:,开口都向上;,顶点是原点而且是抛物线的最低点,对称轴是y轴,开口大小不同;,|a|越大,,在对称轴的左侧,y随着x的增大而减小。,在对称轴的右侧,y随着x的增大而增大。,抛物线的开口越小。,29,2020/5/21,30,2020/5/21,解:列表,(2)描点,(3)连线,-,-2.25,-,-0.25,-0.25,-,-2.25,-,-2,-2,-,-,-,-,-.,-.,-.,-.,-.,-.,-.,-.,-4.5,-4.5,-1,-2,-3,0,1,2,3,-1,-2,-3,-4,-5,31,2020/5/21,-1,-2,-3,0,1,2,3,-1,-2,-3,-4,-5,观察,函数y=x2,y=2x2的图象与函数y=x2(图中蓝线图形)的图象相比,有什么共同点和不同点?,共同点:,开口都向下;,不同点:,顶点是原点而且是抛物线的最高点,对称轴是y轴,开口大小不同;,|a|越大,,在对称轴的左侧,y随着x的增大而增大。,在对称轴的右侧,y随着x的增大而减小。,抛物线的开口越小,32,2020/5/21,对比抛物线,y=x2和y=x2.它们关于x轴对称吗?一般地,抛物线y=ax2和y=ax2呢?,在同一坐标系内,抛物线与抛物线是关于x轴对称的.,33,2020/5/21,向上,向下,(0,0),(0,0),y轴,y轴,当x0时,y随着x的增大而减小。,抛物线的开口就越小.,|a|越小,抛物线的开口就越大.,34,1.已知抛物线y=ax2经过点A(-2,-8).(1)求此抛物线的函数解析式;(2)判断点B(-1,-4)是否在此抛物线上.(3)求出此抛物线上纵坐标为-6的点的坐标.,解(1)把(-2,-8)代入y=ax2,得-8=a(-2)2,解得a=-2,所求函数解析式为y=-2x2.,(2)把x=-1代入,y-2-4.所以点B不在抛物线上。,(3)由-6=-2x2,得x2=3,所以纵坐标为-6的点有两个,它们分别是,35,2020/5/21,反馈测试,抛物线y=4x2中的开口方向是,顶点坐标是,对称轴是.抛物线y=-,x2的开口方向是,顶点坐标是,对称轴是.3.二次函数y=ax2与y=2x2,开口大小,形状一样,开口方向相反,则a=.,36,2020/5/21,二次函数y2x21的图象与二次函数y2x2的图象开口方向、对称轴和顶点坐标是否相同?它们有什么关系?我们应该采取什么方法来研究这个问题?,画出函数y2x2和函数y2x2+1的图象,并加以比较,37,2020/5/21,(1)二次函数y=2x1的图象与二次函数y=2x的图象有什么关系?,(0,1),38,2020/5/21,(0,1),问题1:当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?,39,2020/5/21,2、函数y2x21的图象可以看成是将函数y2x2的图象向上平移一个单位得到的。,1、函数y2x21与y2x2的图象开口方向、对称轴相同,但顶点坐标不同,函数y2x2的图象的顶点坐标是(0,0),而函数y2x21的图象的顶点坐标是(0,1)。,函数y2x21和y2x2的图象有什么联系?,40,2020/5/21,你能由函数y2x2的性质,得到函数y2x21的一些性质吗?完成填空:当x_时,函数值y随x的增大而减小;当x_时,函数值y随x的增大而增大,当x_时,函数取得最_值,最_值y_以上就是函数y2x21的性质。,0,0,=0,小,小,1,41,2020/5/21,(2)二次函数y=3x1的图象与二次函数y=3x的图象有什么关系?,(0,-1),a0,42,2020/5/21,试说出函数yax2k(a、k是常数,a0)的图象的开口方向、对称轴和顶点坐标,并填写下表,向上,向下,y轴,y轴,(0,k),(0,k),|a|越大开口越小,反之开口越大。,43,2020/5/21,练习1.把抛物线向下平移2个单位,可以得到抛物线,再向上平移5个单位,可以得到抛物线;2.对于函数y=x2+1,当x时,函数值y随x的增大而增大;当x时,函数值y随x的增大而减小;当x时,函数取得最值,为。,0,0,=0,大,1,44,2020/5/21,3.函数y=3x2+5与y=3x2的图象的不同之处是()A.对称轴B.开口方向C.顶点D.形状4.已知抛物线y=2x21上有两点(x1,y1),(x2,y2)且x1x20,则y1y2(填“”或“”)5.已知抛物线,把它向下平移,得到的抛物线与x轴交于A、B两点,与y轴交于C点,若ABC是直角三角形,那么原抛物线应向下平移几个单位?,C,45,2020/5/21,二次函数y=ax2+k的性质,开口向上,开口向下,a的绝对值越大,开口越小,关于y轴对称,顶点是最低点,顶点是最高点,在对称轴左侧递减在对称轴右侧递增,在对称轴左侧递增在对称轴右侧递减,k0,k0,向右平移;h0,h0时,开口向上;,当a0时,开口向上,当a0,向上平移;k0,向右平移;h0时,开口向上,当a0),y=a(x-h)2+k(a0时,向右平移;当h0时向上平移;当k0时,开口向上,在对称轴左侧,y都随x的增大而减小,在对称轴右侧,y都随x的增大而增大.a0B.0,5.若把抛物线y=x2-2x+1向右平移2个单位,再向下平移3个单位,得抛物线y=x2+bx+c,则()A.b=2c=6B.b=-6,c=6C.b=-8c=6D.b=-8,c=18,B,B,83,2020/5/21,6.若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx-3的大致图象是(),7.在同一直角坐标系中,二次函数y=ax2+bx+c与一次函数y=ax+c的大致图象可能是(),C,C,84,2020/5/21,二次函数y=ax2+bx+c(a0)的图象和性质,.顶点坐标与对称轴,.位置与开口方向,.增减性与最值,抛物线,顶点坐标,对称轴,位置,开口方向,增减性,最值,y=ax2+bx+c(a0),y=ax2+bx+c(a0时,开口向上,在对称轴左侧,y都随x的增大而减小,在对称轴右侧,y都随x的增大而增大.a0时,向右平移;当0时向上平移;当0时,向下平移)得到的.,驶向胜利的彼岸,回味无穷,二次函数y=ax2+bx+c(a0)与=ax的关系,87,2020/5/21,(五)、学习回顾:,填写表格:,88,解:,设所求的二次函数为,解得,所求二次函数为,y=x2-2x-3,已知一个二次函数的图象过点(0,-3)(4,5)(1,0)三点,求这个函数的解析式?,例题,二次函数的图象过点(0,-3)(4,5)(1,0),c=-3,a-b+c=0,16a+4b+c=5,a=b=c=,1,-2,-3,x=0时,y=-3;x=4时,y=5;x=-1时,y=0;,y=ax2+bx+c,89,2020/5/21,解:,设所求的二次函数为y=a(x-3)(x+1),已知一个二次函数的图象过点(0,-3)(-1,0)(3,0)三点,求这个函数的解析式?,变式1,所求二次函数为y=(x-3)(x+1),即y=x2-2x-3,依题意得-3=a(0-3)(0+1)解得a=1,90,2020/5/21,解:,设所求的二次函数为,已知抛物线的顶点为(1,4),且过点(0,3),求抛物线的解析式?,点(0,-3)在抛物线上,a-4=-3,所求的抛物线解析式为y=(x-1)2-4,变式2,a=1,最低点为(1,-4),x=1,y最值=-4,y=a(x-1)2-4,91,2020/5/21,解:,设所求的二次函数为,已知一个二次函数的图象过点(0,-3)(4,5)对称轴为直线x=1,求这个函数的解析式?,变式3,y=a(x-1)2+k,思考:怎样设二次函数关系式,92,2020/5/21,1、已知抛物线y=ax2+bx+c,0,问题1,经过点(-1,0),则_,经过点(0,-3),则_,经过点(4,5),则_,对称轴为直线x=1,则_,当x=1时,y=0,则a+b+c=_,a-b+c=0,c=-3,16a+4b+c=5,93,2020/5/21,顶点坐标是(-3,4),则h=_,k=_,,-3,a(x+3)2+4,4,问题2,2、已知抛物线y=a(x-h)2+k,对称轴为直线x=1,则_,代入得y=_,代入得y=_,h=1,a(x-1)2+k,94,2020/5/21,-x1,-x2,求出下表中抛物线与x轴的交点坐标,看看你有什么发现?,(1,0)(3,0),(2,0)(-1,0),(-4,0)(-6,0),(x1,0),(x2,0),y=a(x_)(x_)(a0),交点式,问题3,95,2020/5/21,-x1,-x2,求出下表中抛物线与x轴的交点坐标,看看你有什么发现?,(1,0)(3,0),(2,0)(-1,0),(-4,0)(-6,0),(x1,0),(x2,0),y=a(x_)(x_)(a0),交点式,问题3,y=a(x-1)(x-3)(a0),y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国中药饮片行业发展趋势预测及投资规划研究报告
- 2023-2028年中国红木木材行业市场深度分析及未来发展趋势预测报告
- 2025年中国家用电烤箱市场供需现状及投资战略研究报告
- 2025年 西藏行测考试笔试试题附答案
- 锦纶行业深度研究分析报告(2024-2030版)
- 中国装修施工服务行业市场深度研究及投资战略规划报告
- 2025年 安康白河县医疗卫生机构定向招聘考试笔试试题附答案
- 2025年教育培训项目立项申请报告模板
- 2025年中国导航设备市场全景评估及投资规划建议报告
- 图像卡行业深度研究分析报告(2024-2030版)
- 物业小饭桌管理制度
- 2025年湖南省普通高中学业水平考试合格性考试模拟试题(长郡版高一生物)(原卷版)
- 2025春国家开放大学《思想道德与法治》终考大作业答案
- 医师职业素养课件
- 电网工程设备材料信息参考价2025年第一季度
- 2024年安徽省初中学业水平考试生物试题含答案
- Python试题库(附参考答案)
- 2024年浙江省中考英语试题卷(含答案解析)
- 移动取消宽带委托书
- 胃肠外科病人围手术期全程营养管理中国专家共识2021版PPT课件
- 年产量50万吨苯乙烯工艺设计
评论
0/150
提交评论