




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
页眉 特征方程法求解递推关系中的数列通项当时,的取值称为不动点,不动点是我们在竞赛中解决递推式的基本方法。 典型例子: 令 ,即 ,令此方程的两个根为, (1)若,则有 (其中)(2)若,则有 (其中)例题1:设, (1)求函数的不动点; (2)对(1)中的二个不动点,求使恒成立的常数的值;(3)对由定义的数列,求其通项公式。解析:(1)设函数的不动点为,则解得或 (2)由可知使恒成立的常数。(3)由(2)可知,所以数列 是以为首项,为公比的等比数列。则,则 例2已知数列满足性质:对于 且求的通项公式.解:依定理作特征方程变形得 其根为故特征方程有两个相异的根,则有即 又 数列是以为首项,为公比的等比数列 例3已知数列满足:对于都有(1)若求 (2)若求解:作特征方程 变形得 特征方程有两个相同的特征根(1)对于都有 (2)一、数列的一阶特征方程(型)在数列中,已知,且时,(是常数),(1)当时,数列为等差数列;(2)当时,数列为常数数列;(3)当时,数列为等比数列;(4)当时,称是数列的一阶特征方程,其根叫做特征方程的特征根,这时数列的通项公式为:;例1:已知数列中,且时,求;(参考答案:)二、数列的二阶特征方程(型)在数列中,与已知,且(是常数),则称是数列的二阶特征方程,其根,叫做特征方程的特征根。(1)当时,有; (2)当时,有;其中由代入后确定。例2:在数列中,且时,求;(参考答案:)考虑一个简单的线性递推问题.设已知数列的项满足, 其中求这个数列的通项公式.采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法特征方程法:针对问题中的递推关系式作出一个方程称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述.定理1.设上述递推关系式的特征方程的根为,则当时,为常数列,即,其中是以为公比的等比数列,即.证明:因为由特征方程得作换元则当时,数列是以为公比的等比数列,故当时,为0数列,故(证毕)下面列举两例,说明定理1的应用.例1已知数列满足:求解:作方程当时,数列是以为公比的等比数列.于是例2已知数列满足递推关系:其中为虚数单位.当取何值时,数列是常数数列?解:作方程则要使为常数,即则必须现在考虑一个分式递推问题(*).例3已知数列满足性质:对于且求的通项公式.将这问题一般化,应用特征方程法求解,有下述结果.定理2.如果数列满足下列条件:已知的值且对于,都有(其中p、q、r、h均为常数,且),那么,可作特征方程.(1)当特征方程有两个相同的根(称作特征根)时,若则若,则其中特别地,当存在使时,无穷数列不存在.(2)当特征方程有两个相异的根、(称作特征根)时,则,其中证明:先证明定理的第(1)部分.作交换则 是特征方程的根,将该式代入式得 将代入特征方程可整理得这与已知条件矛盾.故特征方程的根于是 当,即=时,由式得故当即时,由、两式可得此时可对式作如下变化: 由是方程的两个相同的根可以求得 将此式代入式得令则故数列是以为公差的等差数列. 其中当时,当存在使时,无意义.故此时,无穷数列是不存在的.再证明定理的第(2)部分如下:特征方程有两个相异的根、,其中必有一个特征根不等于,不妨令于是可作变换故,将代入再整理得 由第(1)部分的证明过程知不是特征方程的根,故故所以由式可得: 特征方程有两个相异根、方程有两个相异根、,而方程与方程又是同解方程.将上两式代入式得当即时,数列是等比数列,公比为.此时对于都有 当即时,上式也成立.由且可知 所以(证毕)注:当时,会退化为常数;当时,可化归为较易解的递推关系,在此不再赘述.现在求解前述例3的分类递推问题.解:依定理作特征方程变形得其根为故特征方程有两个相异的根,使用定理2的第(2)部分,则有 即例4已知数列满足:对于都有(1)若求(2)若求(3)若求(4)当取哪些值时,无穷数列不存在?解:作特征方程变形得特征方程有两个相同的特征根依定理2的第(1)部分解答.(1)对于都有(2) 令,得.故数列从第5项开始都不存在,当4,时,.(3) 令则对于(4)显然当时,数列从第2项开始便不存在.由本题的第(1)小题的解答过程知,时,数列是存在的,当时,则有令则得且2.当(其中且N2)时,数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿园中班音乐教案《老公公歌表演》
- 绿色消费面试实战模拟题
- 货币银行学之信用、利息与利息率
- 学校2021年幼儿园万圣节英文版介绍班会课件
- 201712三腔二囊管使用
- 《身体结构》课件
- 超声引导下的神经阻滞
- 商业设计项目汇报
- 新供电营业规则解读
- 三级医院评审标准落实体系构建与实施路径
- 棚钢结构施工方案
- GA/T 1132-2014车辆出入口电动栏杆机技术要求
- GA 1800.5-2021电力系统治安反恐防范要求第5部分:太阳能发电企业
- 部编(统编)版-小学语文六年级教科书培训-讲座课件
- 达格列净的疗效与安全课件
- 学校后勤管理工作课件
- 2021年孝感安陆市教师进城考试笔试试题及答案解析
- 沪教版小学二年级上册数学期中整理复习假期练习题单
- 医疗风险管理检查记录表
- 光伏发电项目施工方案及技术措施
- 高职机械制图说课稿市公开课金奖市赛课一等奖课件
评论
0/150
提交评论