




免费预览已结束,剩余193页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
糖代谢,MetabolismofCarbohydrates,本章主要讨论的内容:,小肠上皮细胞对葡萄糖的吸收机:主动吸收,2.血糖的概念。降低血糖的激素是胰岛素,它的作用机制。升高血糖的激素有肾上腺素、胰高血糖素、糖皮质激素和生长激素。,糖的有氧化及三羧酸循环的概念,反应过程、关键酶、能量变化、生理意义。参与糖有氧化反应的辅酶及它们所含的维生素。,5.磷酸戊糖途径的概念,第一阶段的反应过程、关键酶、生理意义。,3.糖酵解的概念,反应过程、关键酶、能量变化、生理意义。在糖酵解调节中,对6-磷酸果糖-1的调节,7.肝糖原能调节血糖浓度是因为肝组织中存在葡萄糖-6-磷酸酶,8.糖异生的概念、反应过程、关键酶、生理意义,6.糖原合成、糖原分解的概念,反应过程、关键酶、生理意义。在糖原合成、糖原分解中对关键酶的调节。,糖(carbohydrates)即碳水化合物,其化学本质为多羟醛或多羟酮类及其衍生物或多聚物。,糖的化学,(一)糖的概念,(二)糖的分类及其结构,根据其水解产物的情况,糖主要可分为以下四大类。,单糖(monosacchride)寡糖(oligosacchride)多糖(polysacchride)结合糖(glycoconjugate),葡萄糖(glucose)已醛糖,果糖(fructose)已酮糖,1.单糖不能再水解的糖。,目录,半乳糖(galactose)已醛糖,核糖(ribose)戊醛糖,目录,2.寡糖,常见的几种二糖有,麦芽糖(maltose)葡萄糖葡萄糖,蔗糖(sucrose)葡萄糖果糖,乳糖(lactose)葡萄糖半乳糖,能水解生成几分子单糖的糖,各单糖之间借脱水缩合的糖苷键相连。,3.多糖能水解生成多个分子单糖的糖。,常见的多糖有,淀粉(starch),糖原(glycogen),纤维素(cellulose),淀粉是植物中养分的储存形式,淀粉颗粒,目录,糖原是动物体内葡萄糖的储存形式,目录,纤维素作为植物的骨架,目录,4.结合糖糖与非糖物质的结合物。,糖脂(glycolipid):是糖与脂类的结合物。糖蛋白(glycoprotein):是糖与蛋白质的结合物。,常见的结合糖有,第一节概述,Introduction,新陈代谢过程:,分三个阶段:,消化吸收中间代谢分泌排泄,淀粉GG,糖原,中间产物,氨基酸NH3尿素,蛋白质,CO2+H2O+ATP,肺肾,一、糖的生理功能,1.氧化供能,如糖可提供合成某些氨基酸、脂肪、胆固醇、核苷等物质的原料。,3.作为机体组织细胞的组成成分,这是糖的主要功能。,2.提供合成体内其他物质的原料,如糖是糖蛋白、蛋白聚糖、糖脂等的组成成分。,二、糖的消化与吸收,(一)糖的消化,人类食物中的糖主要有植物淀粉、动物糖原以及麦芽糖、蔗糖、乳糖、葡萄糖等,其中以淀粉为主。,消化部位:主要在小肠,少量在口腔,淀粉,麦芽糖+麦芽三糖(40%)(25%),-临界糊精+异麦芽糖(30%)(5%),葡萄糖,唾液中的-淀粉酶,-葡萄糖苷酶,-临界糊精酶,消化过程,肠粘膜上皮细胞刷状缘,胃,口腔,肠腔,胰液中的-淀粉酶,食物中含有的大量纤维素,因人体内无-糖苷酶而不能对其分解利用,但却具有刺激肠蠕动等作用,也是维持健康所必需。,(二)糖的吸收,1.吸收部位小肠上段,2.吸收形式单糖,ADP+Pi,ATP,G,Na+,K+,小肠粘膜细胞,肠腔,门静脉,3.吸收机制,Na+依赖型葡萄糖转运体(Na+-dependentglucosetransporter,SGLT),刷状缘,细胞内膜,主动运输,G,G,G,顺浓度差,4.吸收途径,小肠肠腔,肠粘膜上皮细胞,门静脉,肝脏,体循环,SGLT,各种组织细胞,GLUT,GLUT:葡萄糖转运体(glucosetransporter),已发现有5种葡萄糖转运体(GLUT15)。,SGLT:Na+依赖型葡萄糖转运体(Na+-dependentglucosetransporter,),三、糖代谢的概况,葡萄糖,丙酮酸,H2O及CO2,乳酸,乳酸、氨基酸、甘油,糖原,核糖+NADPH+H+,淀粉,第三节血糖及其调节BloodGlucoseandTheRegulationofBloodGlucoseConcentration,*血糖,指血液中的葡萄糖。,*血糖水平,即血糖浓度。正常血糖浓度:3.896.11mmol/L,血糖及血糖水平的概念,血糖,一、血糖来源和去路,糖尿,肾糖阈,二、血糖水平的调节,血糖相对恒定是神经系统、激素及组织器官共同调节的结果。神经系统主要依靠激素对血糖进行调节,血糖水平恒定的生理意义,保证重要组织器官的能量供应,特别是某些依赖葡萄糖供能的组织器官。,脑组织不能利用脂酸,正常情况下主要依赖葡萄糖供能;红细胞没有线粒体,完全通过糖酵解获能;骨髓及神经组织代谢活跃,经常利用葡萄糖供能。,肝脏是调节血糖的最主要器官,器官水平调节的两个主要影响因素:血糖浓度和组织细胞膜上GLUT:血糖浓度正常时:GLUT1和GLUT3摄取葡萄糖作为能量来源。GLUT5与小肠内葡萄糖吸收有关。血糖浓度过高时:肝细胞膜上GLUT2,快速摄取葡萄糖合成肝糖原;肌肉细胞膜上GLUT4,摄取葡萄糖合成肌糖原;脂肪细胞膜上GLUT4,摄取葡萄糖合成脂肪。血糖浓度偏低时:肝脏通过糖原分解及糖异生来升高血糖浓度。,(一)胰岛素,促进葡萄糖转运进入肝外细胞;,加速糖原合成,抑制糖原分解;,加快糖的有氧氧化;,抑制肝内糖异生;,减少脂肪动员。,体内唯一降低血糖水平的激素,胰岛素的作用机制:,(二)胰高血糖素,促进肝糖原分解,抑制糖原合成;,抑制酵解途径,促进糖异生;,促进脂肪动员。,体内升高血糖水平的主要激素,*此外,糖皮质激素和肾上腺素也可升高血糖,肾上腺素主要在应急状态下发挥作用。,胰高血糖素的作用机制:,(三)糖皮质激素,引起血糖升高,肝糖原增加,糖皮质激素的作用机制可能有两方面:促进肌肉蛋白质分解,分解产生的氨基酸转移到肝进行糖异生。抑制肝外组织摄取和利用葡萄糖,抑制点为丙酮酸的氧化脱羧。,*此外,在糖皮质激素存在时,其他促进脂肪动员的激素才能发挥最大的效果,间接抑制周围组织摄取葡萄糖。,(四)肾上腺素,强有力的升高血糖的激素,肾上腺素的作用机制,通过肝和肌肉的细胞膜受体、cAMP、蛋白激酶级联激活磷酸化酶,加速糖原分解为血糖、促进肌糖原酵解并促进糖异生。主要在应激状态下发挥调节作用。,(五)生长激素,早期:有胰岛素样作用(时间很短)晚期:有抗胰岛素作用(主要作用),*葡萄糖耐量(glucosetolerence),正常人体内存在一套精细的调节糖代谢的机制,在一次性食入大量葡萄糖后,血糖水平不会出现大的波动和持续升高。,指人体对摄入的葡萄糖具有很大的耐受能力的现象。,糖耐量试验(glucosetolerancetest,GTT),目的:临床上用来诊断病人有无糖代谢异常。,口服糖耐量试验的方法,被试者清晨空腹静脉采血测定血糖浓度,然后一次服用100g葡萄糖,服糖后的1/2、1、2h(必要时可在3h)各测血糖一次。以测定血糖的时间为横坐标(空腹时为0h),血糖浓度为纵坐标,绘制糖耐量曲线。,糖耐量曲线,正常人:服糖后1/21h达到高峰,然后逐渐降低,一般2h左右恢复正常值。,糖尿病患者:空腹血糖高于正常值,服糖后血糖浓度急剧升高,2h后仍可高于正常。,三、血糖水平异常,(一)高血糖及糖尿症,1.高血糖(hyperglycemia)的定义,2.肾糖阈的定义,临床上将空腹血糖浓度高于7.227.78mmol/L称为高血糖。,当血糖浓度高于8.8910.00mmol/L时,超过了肾小管的重吸收能力,则可出现糖尿。这一血糖水平称为肾糖阈。,3.高血糖及糖尿的病理和生理原因,持续性高血糖和糖尿,主要见于糖尿病(diabetesmellitus,DM)。,型(胰岛素依赖型)型(非胰岛素依赖型),b.血糖正常而出现糖尿,见于慢性肾炎、肾病综合征等引起肾对糖的吸收障碍。,c.生理性高血糖和糖尿可因情绪激动而出现。,糖尿病可分为二型:,(二)低血糖,1.低血糖(hypoglycemia)的定义,2.低血糖的影响,空腹血糖浓度低于3.333.89mmol/L时称为低血糖。,血糖水平过低,会影响脑细胞的功能,从而出现头晕、倦怠无力、心悸等症状,严重时出现昏迷,称为低血糖休克。,3.低血糖的病因,胰性(胰岛-细胞功能亢进、胰岛-细胞功能低下等)肝性(肝癌、糖原积累病等)内分泌异常(垂体功能低下、肾上腺皮质功能低下等)肿瘤(胃癌等)饥饿或不能进食,第四节糖的无氧分解Glycolysis,一、糖分解代谢途径,无氧酵解(anaerobicglycolysis),有氧氧化(aerobicoxidation),磷酸戊糖途径(pentosephosphatepathway),3,磷酸戊糖途径,有氧氧化,无氧酵解,糖的无氧酵解概念:,在缺氧的条件下,葡萄糖或糖原分解为乳酸,释放少量的能量,反应过程与酵母生醇发酵相似,故称之为无氧酵解。,糖的无氧酵解总反应葡萄糖2乳酸,C6H6O6+2ADP+H3PO42CH3CHOHCOOH+2ATP+2H2O,反应过程,反应部位:细胞浆中整个途径分为四个阶段,1.己糖磷酸化,2.磷酸己糖裂解为2分子磷酸丙糖,3.磷酸丙糖氧化为丙酮酸产生ATP,4.丙酮酸还原为乳酸,消耗ATP,糖酵解途径,糖酵解途径,糖酵解的反应过程,第一阶段,第二阶段,*糖酵解(glycolysis)的定义,*糖酵解分为两个阶段,*糖酵解的反应部位:胞浆,在缺氧情况下,葡萄糖生成乳酸(lactate)的过程称之为糖酵解。,由葡萄糖分解成丙酮酸(pyruvate),称之为糖酵解途径(glycolyticpathway)。,由丙酮酸转变成乳酸。,葡萄糖磷酸化为6-磷酸葡萄糖,葡萄糖,6-磷酸葡萄糖(glucose-6-phosphate,G-6-P),(一)葡萄糖分解成丙酮酸,G-6-P:是重要的中间代谢产物,是许多糖代谢途径的连接点。,哺乳类动物体内已发现有4种己糖激酶同工酶,分别称为至型。肝细胞中存在的是型,称为葡萄糖激酶(glucokinase)。它的特点是:对葡萄糖的亲和力很低(饮食后才起作用)受激素调控,6-磷酸葡萄糖转变为6-磷酸果糖,6-磷酸葡萄糖,6-磷酸果糖(fructose-6-phosphate,F-6-P),6-磷酸果糖转变为1,6-双磷酸果糖,6-磷酸果糖激酶-1:主要限速酶,主要调节点。,6-磷酸果糖,1,6-双磷酸果糖(1,6-fructose-biphosphate,F-1,6-2P),(6-phosphfructokinase-1),1,6-双磷酸果糖,磷酸己糖裂解成2分子磷酸丙糖,磷酸丙糖的同分异构化,磷酸丙糖异构酶(phosphotrioseisomerase),3-磷酸甘油醛,磷酸二羟丙酮,3-磷酸甘油醛氧化为1,3-二磷酸甘油酸,3-磷酸甘油醛脱氢酶(glyceraldehyde-3-phosphatedehydrogenase),3-磷酸甘油醛,1,3-二磷酸甘油酸,1,3-二磷酸甘油酸转变成3-磷酸甘油酸,1,3-二磷酸甘油酸,3-磷酸甘油酸,磷酸甘油酸激酶(phosphoglyceratekinase),在以上反应中,底物分子内部能量重新分布,生成高能键,使ADP磷酸化生成ATP的过程,称为底物水平磷酸化(substratelevelphosphorylation)。,3-磷酸甘油酸转变为2-磷酸甘油酸,磷酸甘油酸变位酶(phosphoglyceratemutase),3-磷酸甘油酸,2-磷酸甘油酸,2-磷酸甘油酸转变为磷酸烯醇式丙酮酸,2-磷酸甘油酸,磷酸烯醇式丙酮酸转变成丙酮酸,并通过底物水平磷酸化生成ATP,磷酸烯醇式丙酮酸,丙酮酸,丙酮酸激酶:关键酶及调节点。,(二)丙酮酸转变成乳酸,丙酮酸,乳酸,反应中的NADH+H+来自于上述第6步反应中的3-磷酸甘油醛脱氢反应。,糖酵解的代谢途径,E2,E1,E3,糖酵解小结,反应部位:胞浆糖酵解是一个不需氧的产能过程反应全过程中有三步不可逆的反应,产能的方式和数量方式:底物水平磷酸化净生成ATP数量:从G开始22-2=2ATP从Gn开始22-1=3ATP终产物乳酸的去路释放入血,进入肝脏再进一步代谢。分解利用乳酸循环(糖异生),除葡萄糖外,其它己糖也可转变成磷酸己糖而进入酵解途径。,二糖酵解过程的能量变化,30.5所以通过酵解获能效率是:=31%196,每形成molATPG0=+30.5kJ/mol,4,三、糖酵解的生理意义,1.是机体在缺氧情况下获取能量的有效方式。,2.是某些细胞在氧供应正常情况下的重要供能途径。,无线粒体的细胞,如:红细胞,代谢活跃的细胞,如:白细胞、骨髓细胞,3.是有氧氧化的前段过程,其一些中间代谢物是脂类、氨基酸等合成的前体。,四、糖酵解的调节,关键酶,调节方式,(一)6-磷酸果糖激酶-1(PFK-1),*别构调节,别构激活剂:AMP;ADP;F-1,6-2P;F-2,6-2P,别构抑制剂:柠檬酸;ATP(高浓度),F-6-P,F-1,6-2P,ATP,ADP,PFK-1,磷蛋白磷酸酶,PKA,目录,总结,*其中F1.6DP是磷酸果糖激酶-1的反应产物属正反馈作用,1)磷酸果糖激酶-1是变构酶变构抑制剂:高浓度ATP、柠檬酸,H+变构激活剂:AMP、ADP、F-1.6DP、F-2,6DP、H3PO4,(1)6-磷酸果糖激酶-2是一双功能酶,即一条多肽链上同时具有PFK-2和果糖二磷酸酶的活性。,2)2,6二磷酸果糖(F-2,6DP),(2)6-磷酸果糖激酶-2的活性受到共价修饰调节,血糖浓度处于低水平血糖浓度处于高水平胰高血糖素cAMP浓度双功能酶磷酸化双功能酶去磷酸化果糖二磷酸酶-2活性6-磷酸果糖激酶-2活性F2,6DP浓度酵解F2,6DP浓度酵解,(3)F-2,6DP对糖酵解的调节机制,(二)丙酮酸激酶,1.别构调节,别构抑制剂:ATP,丙氨酸,别构激活剂:1,6-双磷酸果糖,2.共价修饰调节,丙酮酸激酶,丙酮酸激酶,ATP,ADP,Pi,磷蛋白磷酸酶,(无活性),(有活性),PKA:蛋白激酶A(proteinkinaseA),CaM:钙调蛋白,(三)己糖激酶或葡萄糖激酶,*6-磷酸葡萄糖可反馈抑制己糖激酶,但肝葡萄糖激酶不受其抑制。,*长链脂肪酰CoA可别构抑制肝葡萄糖激酶。,肝葡萄糖激酶的直接调节因素是血糖浓度。,第五节糖的有氧氧化AerobicOxidationofCarbohydrate,糖的有氧氧化(aerobicoxidation)指在机体氧供充足时,葡萄糖彻底氧化成H2O和CO2,并释放出能量的过程。是机体主要供能方式。,*部位:胞液及线粒体,*概念,一、有氧氧化的反应过程,第一阶段:酵解途径,第二阶段:丙酮酸的氧化脱羧,第三阶段:三羧酸循环,G(Gn),第四阶段:氧化磷酸化,丙酮酸,乙酰CoA,H2O,O,ATP,ADP,TAC循环,胞液,线粒体,第一阶段,葡萄糖丙酮酸,1)反应在胞浆内进行,2)反应过程与酵解相同,3)此阶段产生2克分子ATP和2对NADH+H+,第二阶段:丙酮酸的氧化脱羧,丙酮酸进入线粒体,氧化脱羧为乙酰CoA(acetylCoA)。,总反应式:,丙酮酸脱氢酶复合体的组成,酶E1:丙酮酸脱氢酶E2:二氢硫辛酰胺转乙酰酶E3:二氢硫辛酰胺脱氢酶,由三种酶组成的多酶复合体(3种酶,5种辅酶),丙酮酸脱氢酶复合体催化的反应过程,1.丙酮酸脱羧形成羟乙基-TPP。2.由二氢硫辛酰胺转乙酰酶(E2)催化形成乙酰硫辛酰胺-E2。3.二氢硫辛酰胺转乙酰酶(E2)催化生成乙酰CoA,同时使硫辛酰胺上的二硫键还原为2个巯基。4.二氢硫辛酰胺脱氢酶(E3)使还原的二氢硫辛酰胺脱氢,同时将氢传递给FAD。5.在二氢硫辛酰胺脱氢酶(E3)催化下,将FADH2上的H转移给NAD+,形成NADH+H+。,CO2,CoASH,NAD+,NADH+H+,5.NADH+H+的生成,1.-羟乙基-TPP的生成,2.乙酰硫辛酰胺的生成,3.乙酰CoA的生成,4.硫辛酰胺的生成,目录,三羧酸循环(TricarboxylicacidCycle,TAC)也称为柠檬酸循环,这是因为循环反应中的第一个中间产物是一个含三个羧基的柠檬酸。由于Krebs正式提出了三羧酸循环的学说,故此循环又称为Krebs循环,它由一连串反应组成。由于循环中第一个中间产物是柠檬酸,又称柠檬酸循环(citratecycle),所有的反应均在线粒体中进行。,第三阶段三羧酸循环,*概述,*反应部位,乙酰辅酶A与草酰乙酸缩合生成柠檬酸,*催化反应的酶为柠檬酸合成酶柠檬酸合成酶是TCA循环中的第一个限速酶,*此反应不可逆,第一次氧化脱羧(-氧化脱羧),*催化反应的酶异拧檬酸脱氢酶异拧檬酸脱氢酶是TCA循环中的第二个限速酶,*此反应不可逆,*此反应产生一分子CO2和一对NADH+H+,第二次氧化脱羧(-氧化脱羧),*催化反应的酶是-酮戊二酸脱氢酶系,-酮戊二酸脱氢酶系为一多酶复合体,是TCA循环中的第三个限速酶,*此反应不可逆,*此反应产生一分子CO2和一对NADH+H+,*-酮戊二酸脱氢酶系组成与丙酮酸脱氢酶系类似.,(4)底物水平磷酸化反应(TCA中唯一一次)*催化反应的酶是琥珀酸硫激酶,*此反应是可逆的*此反应产生1克分子GTP,GTP可将高能磷酸基团转移至ADP生成ATP,*催化反应的酶是琥珀酸脱氢酶,辅基为FAD,*此反应是可逆的*此反应产生1个FADH2,(5)琥珀酸氧化成草酰乙酸(3个反应),反应一,反应二,*催化反应的酶是延胡索酸酶*此反应是可逆的,反应三,*催化反应的酶是苹果酸脱氢酶,辅酶为NAD+*此反应是可逆的*此反应产生1对NADH+H+,(6)草酰乙酸的主要来自丙酮酸羧化,*催化反应的酶是丙酮酸羧化酶,辅酶为生物素,NADH+H+,NAD+,NAD+,NADH+H+,GTP,GDP+Pi,FAD,FADH2,NADH+H+,NAD+,柠檬酸合酶,顺乌头酸梅,异柠檬酸脱氢酶,-酮戊二酸脱氢酶复合体,琥珀酰CoA合成酶,琥珀酸脱氢酶,延胡索酸酶,苹果酸脱氢酶,目录,小结,三羧酸循环的概念:指乙酰CoA和草酰乙酸缩合生成含三个羧基的柠檬酸,反复的进行脱氢脱羧,又生成草酰乙酸,再重复循环反应的过程。TAC过程的反应部位是线粒体。,三羧酸循环的要点经过一次三羧酸循环,消耗一分子乙酰CoA,经四次脱氢,二次脱羧,一次底物水平磷酸化。生成1分子FADH2,3分子NADH+H+,2分子CO2,1分子GTP。关键酶有:柠檬酸合酶-酮戊二酸脱氢酶复合体异柠檬酸脱氢酶,整个循环反应为不可逆反应,二次脱羧1)异柠檬酸的-氧化脱羧催化反应的酶异拧檬酸脱氢酶,2)-酮戊二酸的-氧化脱羧催化反应的酶是-酮戊二酸脱氢酶系,产生催化反应的酶辅酶能量,一次底物水平的磷酸化,2)-酮戊二酸-酮戊二酸脱氢酶系NAD+3ATP,3)琥珀酸琥珀酸脱氢酶FAD2ATP,4)苹果酸苹果酸脱氢酶NAD+3ATP,四次脱氢,1)异拧檬酸异拧檬酸脱氢酶NAD+3ATP,琥珀酰CoA琥珀酸硫激酶1GTP,三羧酸循环是糖、脂、氨基酸代谢共同途径,三羧酸循环总的反应为乙酰CoA+3NAD+FAD+GDP+Pi+H2OCoA-SH+3(NADN+H+)+FADH2+2CO2+GTP,三羧酸循环的中间产物三羧酸循环中间产物起催化剂的作用,本身无量的变化,不可能通过三羧酸循环直接从乙酰CoA合成草酰乙酸或三羧酸循环中其他产物,同样中间产物也不能直接在三羧酸循环中被氧化为CO2及H2O。,表面上看来,三羧酸循环运转必不可少的草酰乙酸在三羧酸循环中是不会消耗的,它可被反复利用。但是,,例如:,机体内各种物质代谢之间是彼此联系、相互配合的,TAC中的某些中间代谢物能够转变合成其他物质,借以沟通糖和其他物质代谢之间的联系。,机体糖供不足时,可能引起TAC运转障碍,这时苹果酸、草酰乙酸可脱羧生成丙酮酸,再进一步生成乙酰CoA进入TAC氧化分解。,*所以,草酰乙酸必须不断被更新补充。,草酰乙酸,其来源如下:,2.三羧酸循环的生理意义,是三大营养物质氧化分解的共同途径;是三大营养物质代谢联系的枢纽;为其它物质代谢提供小分子前体;为呼吸链提供H+e。,糖的有氧氧化是机体在正常情况下糖氧化供能的主要方式,9,H+e进入呼吸链彻底氧化生成H2O的同时ADP偶联磷酸化生成ATP。,二、有氧氧化生成的ATP,葡萄糖有氧氧化生成的ATP,此表按传统方式计算ATP。目前有新的理论,在此不作详述,有氧氧化的生理意义,糖的有氧氧化是机体产能最主要的途径。它不仅产能效率高,而且由于产生的能量逐步分次释放,相当一部分形成ATP,所以能量的利用率也高。,简言之,即“供能”,三、有氧氧化的调节,关键酶,酵解途径:己糖激酶,丙酮酸的氧化脱羧:丙酮酸脱氢酶复合体,三羧酸循环:柠檬酸合酶,丙酮酸激酶6-磷酸果糖激酶-1,-酮戊二酸脱氢酶复合体异柠檬酸脱氢酶,1.丙酮酸脱氢酶复合体,别构调节,共价修饰调节,目录,异柠檬酸脱氢酶,柠檬酸合酶,-酮戊二酸脱氢酶复合体,柠檬酸,Ca2+,ATP、ADP的影响,产物堆积引起抑制,循环中后续反应中间产物别位反馈抑制前面反应中的酶,其他,如Ca2+可激活许多酶,2.三羧酸循环的调节,有氧氧化的调节特点,有氧氧化的调节通过对其关键酶的调节实现。ATP/ADP或ATP/AMP比值全程调节。该比值升高,所有关键酶均被抑制。氧化磷酸化速率影响三羧酸循环。前者速率降低,则后者速率也减慢。三羧酸循环与酵解途径互相协调。三羧酸循环需要多少乙酰CoA,则酵解途径相应产生多少丙酮酸以生成乙酰CoA。,体内ATP浓度是AMP的50倍,经上述反应后,ATP/AMP变动比ATP变动大,有信号放大作用,从而发挥有效的调节作用。,ATP/ADP或ATP/AMP比值升高抑制有氧氧化,降低则促进有氧氧化。ATP/AMP效果更显著。,*另外,四、巴斯德效应与反巴斯德效应(Cratreeeffect),*巴斯德效应概念,巴斯德效应(Pastuereffect)指有氧氧化抑制糖酵解的现象。,反巴斯德效应(Cratreeeffect),*概念,在一些代谢旺盛的正常组织和肿瘤细胞内,即使在有氧的条件下,仍然以糖无氧酵解为产生ATP的主要方式,这种现象称为。,第六节磷酸戊糖途径PentosePhosphatePathway,*概念,磷酸戊糖途径是指由葡萄糖生成磷酸戊糖及NADPH+H+,前者再进一步转变成3-磷酸甘油醛和6-磷酸果糖的反应过程。,磷酸戊糖途径存的在器官:肝、脂肪组织、泌乳期的乳腺、甲状腺、肾上腺皮质、性腺及红细胞等,*细胞定位:胞液,第一阶段:氧化反应生成磷酸戊糖,NADPH+H+及CO2,一、磷酸戊糖途径的反应过程,*反应过程可分为二个阶段,第二阶段则是非氧化反应包括一系列基团转移。,6-磷酸葡萄糖酸,5-磷酸核酮糖,6-磷酸葡萄糖脱氢酶,6-磷酸葡萄糖酸脱氢酶,6-磷酸葡萄糖,6-磷酸葡萄糖酸内酯,1.磷酸戊糖生成,5-磷酸核糖,内酯酶,异构酶,催化第一步脱氢反应的6-磷酸葡萄糖脱氢酶是此代谢途径的关键酶。两次脱氢脱下的氢均由NADP+接受生成NADPH+H+。反应生成的磷酸核糖是一个非常重要的中间产物。,G-6-P,5-磷酸核糖,NADP+,NADPH+H+,NADP+,NADPH+H+,CO2,每3分子6-磷酸葡萄糖同时参与反应,在一系列反应中,通过3C、4C、6C、7C等演变阶段,最终生成3-磷酸甘油醛和6-磷酸果糖。,3-磷酸甘油醛和6-磷酸果糖,可进入酵解途径。因此,磷酸戊糖途径也称磷酸戊糖旁路(pentosephosphateshunt)。,2.基团转移反应,5-磷酸核酮糖(C5)3,5-磷酸核糖C5,磷酸戊糖途径,第一阶段,第二阶段,总反应式,36-磷酸葡萄糖+6NADP+,26-磷酸果糖+3-磷酸甘油醛+6NADPH+H+3CO2,磷酸戊糖途径的特点,脱氢反应以NADP+为受氢体,生成NADPH+H+。反应过程中进行了一系列酮基和醛基转移反应,经过了3、4、5、6、7碳糖的演变过程。反应中生成了重要的中间代谢物5-磷酸核糖。一分子G-6-P经过反应,只能发生一次脱羧和二次脱氢反应,生成一分子CO2和2分子NADPH+H+。,二、磷酸戊糖途径的调节,*6-磷酸葡萄糖脱氢酶,此酶为磷酸戊糖途径的关键酶,其活性的高低决定6-磷酸葡萄糖进入磷酸戊糖途径的流量。,此酶活性主要受NADPH/NADP+比值的影响,比值升高则被抑制,降低则被激活。另外NADPH对该酶有强烈抑制作用。,三、磷酸戊糖途径的生理意义,(一)为核苷酸的生成提供核糖,(三)提供NADPH作为供氢体参与多种代谢反应,(二)3、4、5、7C糖及6C糖通过磷酸戊糖途径互相转换,1.NADPH是体内许多合成代谢的供氢体,2.NADPH参与体内的羟化反应,与生物合成或生物转化有关,3.NADPH可维持GSH的还原性,2G-SHG-S-S-G,NADP+NADPH+H+,AAH2,第七节糖原的合成与分解GlycogenesisandGlycogenolysis,是动物体内糖的储存形式之一,是机体能迅速动用的能量储备。,糖原(glycogen),糖原储存的主要器官及其生理意义,1.葡萄糖单元以-1,4-糖苷键形成长链。2.约10个葡萄糖单元处形成分枝,分枝处葡萄糖以-1,6-糖苷键连接,分支增加,溶解度增加。3.每条链都终止于一个非还原端.非还原端增多,以利于其被酶分解。,糖原的结构特点及其意义,目录,一、糖原的合成代谢,(二)合成部位,(一)定义,糖原的合成(glycogenesis)指由葡萄糖合成糖原的过程。,组织定位:主要在肝脏、肌肉细胞定位:胞浆,1.葡萄糖磷酸化生成6-磷酸葡萄糖,葡萄糖,6-磷酸葡萄糖,(三)糖原合成途径,2.6-磷酸葡萄糖转变成1-磷酸葡萄糖,这步反应中磷酸基团转移的意义在于:由于延长形成-1,4-糖苷键,所以葡萄糖分子C1上的半缩醛羟基必须活化,才利于与原来的糖原分子末端葡萄糖的游离C4羟基缩合。,半缩醛羟基与磷酸基之间形成的O-P键具有较高的能量。,*UDPG可看作“活性葡萄糖”,在体内充作葡萄糖供体。,+,3.1-磷酸葡萄糖转变成尿苷二磷酸葡萄糖,1-磷酸葡萄糖,尿苷二磷酸葡萄糖(uridinediphosphateglucose,UDPG),4.-1,4-糖苷键式结合,*糖原n为原有的细胞内的较小糖原分子,称为糖原引物(primer),作为UDPG上葡萄糖基的接受体。,(四)糖原分枝的形成,目录,近来人们在糖原分子的核心发现了一种名为糖原蛋白(glycogenin)的蛋白质。Glycogenin可对其自身进行共价修饰,将UDP-葡萄糖分子的C1结合到其酶分子的酪氨酸残基上,从而使它糖基化。这个结合上去的葡萄糖分子即成为糖原合成时的引物。,糖原合成过程中作为引物的第一个糖原分子从何而来?,目录,二、糖原的分解代谢,*定义,*亚细胞定位:胞浆,*肝糖元的分解,1.糖原的磷酸分解,糖原分解(glycogenolysis)习惯上指肝糖原分解成为葡萄糖的过程。,2.脱枝酶的作用,转移葡萄糖残基水解-1,6-糖苷键,转移酶活性,目录,3.1-磷酸葡萄糖转变成6-磷酸葡萄糖,4.6-磷酸葡萄糖水解生成葡萄糖,*肌糖原的分解,肌糖原分解的前三步反应与肝糖原分解过程相同,但是生成6-磷酸葡萄糖之后,由于肌肉组织中不存在葡萄糖-6-磷酸酶,所以生成的6-磷酸葡萄糖不能转变成葡萄糖释放入血,提供血糖,而只能进入酵解途径进一步代谢。肌糖原的分解与合成与乳酸循环有关。,G-6-P的代谢去路,G(补充血糖),G-6-P,F-6-P(进入酵解途径),G-1-P,Gn(合成糖原),UDPG,6-磷酸葡萄糖内酯(进入磷酸戊糖途径),葡萄糖醛酸(进入葡萄糖醛酸途径),小结,反应部位:胞浆,3.糖原的合成与分解总图,三、糖原合成与分解的调节,这两种关键酶的重要特点:*它们的快速调节有共价修饰和变构调节二种方式。*它们都以活性、无(低)活性二种形式存在,二种形式之间可通过磷酸化和去磷酸化而相互转变。,调节有级联放大作用,效率高;,两种酶磷酸化或去磷酸化后活性变化相反;,此调节为酶促反应,调节速度快;,受激素调节。,1.共价修饰调节,磷酸化酶b激酶,糖原合酶,糖原合酶-P,磷酸化酶b,磷酸化酶a-P,磷蛋白磷酸酶抑制剂,(有活性),(有活性),(有活性),(无活性),(无活性),(无活性),(无活性),(有活性),2.别构调节,磷酸化酶二种构像紧密型(T)和疏松型(R),其中T型的14位Ser暴露,便于接受前述的共价修饰调节。,*葡萄糖是磷酸化酶的别构抑制剂。,肌肉内糖原代谢的二个关键酶的调节与肝糖原不同,*在糖原分解代谢时肝主要受胰高血糖素的调节,而肌肉主要受肾上腺素调节。*肌肉内糖原合酶及磷酸化酶的变构效应物主要为AMP、ATP及6-磷酸葡萄糖。,调节小结,双向调控:对合成酶系与分解酶系分别进行调节,如加强合成则减弱分解,或反之。,双重调节:别构调节和共价修饰调节。,肝糖原和肌糖原代谢调节各有特点:如:分解肝糖原的激素主要为胰高血糖素,分解肌糖原的激素主要为肾上腺素。,关键酶调节上存在级联效应。,关键酶都以活性、无(低)活性二种形式存在,二种形式之间可通过磷酸化和去磷酸化而相互转变。,四、糖原积累症,糖原累积症(glycogenstoragediseases)是一类遗传性代谢病,其特点为体内某些器官组织中有大量糖原堆积。引起糖原累积症的原因是患者先天性缺乏与糖原代谢有关的酶类。,糖原积累症分型,第八节糖异生Gluconeogenesis,糖异生(gluconeogenesis)是指从非糖化合物转变为葡萄糖或糖原的过程。,*部位,*原料,*概念,主要在肝、肾细胞的胞浆及线粒体,主要有乳酸、甘油、生糖氨基酸,一、糖异生途径,*定义,*过程,酵解途径中有3个由关键酶催化的不可逆反应。在糖异生时,须由另外的反应和酶代替。,糖异生途径与酵解途径大多数反应是共有的、可逆的;,糖异生途径(gluconeogenicpathway)指从丙酮酸生成葡萄糖的具体反应过程。,1.丙酮酸转变成磷酸烯醇式丙酮酸(PEP),丙酮酸,草酰乙酸,PEP,丙酮酸羧化酶(pyruvatecarboxylase),辅酶为生物素(反应在线粒体),磷酸烯醇式丙酮酸羧激酶(反应在线粒体、胞液),目录,草酰乙酸转运出线粒体,丙酮酸,线粒体,胞液,糖异生途径所需NADH+H+的来源,糖异生途径中,1,3-二磷酸甘油酸生成3-磷酸甘油醛时,需要NADH+H+。,由氨基酸为原料进行糖异生时,NADH+H+则由线粒体内NADH+H+提供,它们来自于脂酸的-氧化或三羧酸循环,NADH+H+转运则通过草酰乙酸与苹果酸相互转变而转运。,2.1,6-双磷酸果糖转变为6-磷酸果糖,3.6-磷酸葡萄糖水解为葡萄糖,非糖物质进入糖异生的途径,糖异生的原料转变成糖代谢的中间产物,上述糖代谢中间代谢产物进入糖异生途径,异生为葡萄糖或糖原,目录,二、糖异生的调节,在前面的三个反应过程中,作用物的互变分别由不同酶催化其单向反应,这种互变循环称之为底物循环(substratecycle)。,因此,有必要通过调节使糖异生途径与酵解途径相互协调,主要是对前述底物循环中的后2个底物循环进行调节。,当两种酶活性相等时,则不能将代谢向前推进,结果仅是ATP分解释放出能量,因而称之为无效循环(futilecycle)。,6-磷酸果糖,1,6-双磷酸果糖,ATP,ADP,6-磷酸果糖激酶-1,Pi,果糖双磷酸酶-1,1.6-磷酸果糖与1,6-双磷酸果糖之间,2.磷酸烯醇式丙酮酸与丙酮酸之间,PEP,丙酮酸,ATP,ADP,丙酮酸激酶,乙酰CoA,草酰乙酸,三、糖异生的生理意义,(一)维持血糖
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 会计基础知识试题及答案
- 2025年农产品质量安全追溯体系与农业产业园区产业发展战略实施优化报告
- 医院急救考试题目及答案
- 2018年乡村医生考试试题及答案
- 2017年低压电工考试题库及答案
- 2025年农产品冷链物流行业市场竞争力评估报告
- 军事院校招生考试测试题带答案
- 京东算法笔测试题及答案
- 2024年五年级语文下册第一单元语文百花园一教案2语文版
- 2024年秋七年级科学上册第4章物质的特性第6节汽化与液化第1课时汽化习题新版浙教版
- GB/T 44466-2024牙科学医师椅
- 台州市黄岩区2023年八年级《数学》下学期期末试题与参考答案
- 广西版五年级下册美术全册教案【完整版】
- 矿产资源储量报告编制和评审中常见问题及其处理意见
- 湖北省襄阳市2024-2025学年高三上学期9月月考+英语试卷(含答案)
- 2023年版成人机械通气患者俯卧位护理解读
- 河南省郑州市管城回族区2023-2024学年五年级下学期期末数学试卷
- 2025年全年日历含农历(1月-12月)
- 2024年安徽省高考物理试卷(真题+答案)
- 2024年江苏省宿迁市中考地理试题(含答案)
- 《学前儿童健康教育》6-3学前儿童安全教育活动的组织与实施课件
评论
0/150
提交评论