23一元二次方程根的判别式_第1页
23一元二次方程根的判别式_第2页
23一元二次方程根的判别式_第3页
23一元二次方程根的判别式_第4页
23一元二次方程根的判别式_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一元二次方程根的判别式民和中学:杨秀娟,大家讨论我们在运用公式法求解一元二次方程ax2+bx+c=0(a0)时,总是要求b2-4ac0,这是为什么?,主要应用:,1.不解方程判断一元二次方程根的情况2.已知方程根的情况确定字母的取值范围,例1.不解方程,判别方程的根的情况_,方程要先化为一般形式再求判别式,例2.在一元二次方程,(),A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.根的情况无法,例3.设关于x的方程,证明:不论m为何值,这个方程总有两个不相等的实数根,所以,不论m为何值,这个方程总有两个不相等的实数根,已知:a、b、c是ABC的三边,若方程有两个等根,试判断ABC的形状.,解:利用0,得出a=b=c.ABC为等边三角形.,典型例题解析,例6.一元二次方程有两个实数根,则m的取值范围是_,本节课同学们必须牢记,1.一元二次方程ax2+bx+c=0(a0)根的情况:(1)当0时,方程有两个不相等的实数根;(2)当=0时,方程有两个相等的实数根;(3)当0时,方程无实数根.,2.根据根的情况,也可以逆推出的情况,这方面的知识主要用来求取值范围等问题.,1.求判别式时,应该先将方程化为一般形式.2.应用判别式解决有关问题时,前提条件为“方程是一元二次方程”,即二次项系数不为0.,方法小结:,课堂训练,1.一元二次方程x2+2x+4=0的根的情况是()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根,D,2.方程x2-3x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.只有一个实数根,A,3.下列一元一次方程中,有实数根的是()A.x2-x+1=0B.x2-2x+3=0C.x2+x-1=0D.x2+4=0,C,4.关于x的方程k2x2+(2k-1)x+1=0有实数根,则下列结论正确的是()A.当k=1/2时,方程两根互为相反数B.当k=0时,方程的根是x=-1C.当k=1时,方程两根互为倒数D.当k1/4时,方程有实数根,D,5.若一元二次方程有两个相等的实数根,那么的值为()A.-4B.4C.1/4D.-1/4,C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论