




已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,我的课堂我的舞台,1,八年级数学(上册)第五章几何证明初步,5.三角形内角和定理(1),授课人:张华之,2,一、复习“三角形内角和定理”,我们已经知道:,三角形的三个内角之和等于180。即:在ABC中,有A+B+C=180,3,二.论证“三角形内角和定理”,4,剪拼,度量,折叠,5,即把A撕下来放在1的位置上,把B撕下来放在2的位置上。这时就可得ACB和1和2组成了一条直线,得到ACB+1+2=180,就可说明A+B+C=180了。,你试过了吗?.,在前面我们是采用拼接的方法来说明的。,6,组成的BC和CD真的就是一条直线吗?,很明显,这是无法确定的,7,如果ABC是画在一块不能分割的平面上,如在黑板上,这时就不可能做到把A、B撕下来再分别放在1、2的位置上,那么又如何论证A+B+C=180呢?,8,三角形内角和定理的证明,9,言必有“据”,我们知道三角形三个内角的和等于180.你还记得这个结论的探索过程吗?,A,B,D,C,(1)如图,当时我们是把A移到了1的位置,B移到了2的位置.如果不实际移动A和B,那么你还有其它方法可以达到同样的效果?,(2)根据前面的公理和定理,你能用自己的语言说说这一结论的证明思路吗?你能用比较简捷的语言写出这一证明过程吗?与同伴交流.,三角形内角和定理三角形三个内角的和等于1800.,10,“行家”看“门道”,已知:如图,A、B、C是ABC的三内角.求证:A+B+C=1800.,证明:作BC的延长线CD,过点C作CEAB,则,你还有其它方法来证明三角形内角和定理吗?.,1=A(两直线平行,内错角相等),2=B(两直线平行,同位角相等).,又1+2+3=1800(平角的定义),A+B+ACB=1800(等量代换).,分析:延长BC到D,过点C作射线CEAB,这样,就相当于把A移到了1的位置,把B移到了2的位置.,这里的CD,CE称为辅助线,辅助线通常画成虚线.,例题欣赏:,11,剪拼,12,一题多解,在证明三角形内角和定理时,小明的想法是把三个角“凑”到A处,他过点A作直线PQBC(如图),他的想法可以吗?,请你帮小明把想法化为实际行动.,证明:过点A作PQBC,则,1=B(两直线平行,内错角相等),2=C(两直线平行,内错角相等),又1+2+3=1800(平角的定义),BAC+B+C=1800(等量代换).,所作的辅助线是证明的一个重要组成部分,要在证明时首先叙述出来.,13,A,B,C,已知:如图,ABC.求证:A+B+C=180,开启智慧,还有其他证明方法吗?,14,A,B,C,证明:过A作AEBC,,E,开启智慧,15,),A,证明:,E,作BC的延长线CD,在ABC的外部,以CA为一边,CE为另一边作1=A,,则CEBA(内错角相等,两直线平行).,B=2(两直线平行,同位角相等).,),1,2,又1+2+ACB=180(平角的定义),A+B+ACB=180(等量代换),B,C,D,16,证明:过点P作PQAC交AB于Q点,作PRAB交AC于R点,17,1.在ABC中,A=80,B=60则C=2.在ABC中,A=40,B=C,则B=3.在ABC中,A=B=C,则B=4.已知:如图,则A等于()A.60B.70C.50D.80,18,如图所示,B=D,则AED与ACB的关系是()A.AEDACBB.AEDACB;C.AED=ACBD.无法确定.下列叙述正确的是()A.钝角三角形的内角和大于锐角三角形的内角和;B.三角形两个内角的和一定大于第三个内角;C.三角形中至少有两个锐角;D.三角形中至少有一个锐角.,19,7.已知:如图,四边形ABCD.求证:A+B+C+D=360.,D,A,B,C,20,我们证明了三角形内角和定理。证明的基本思想是:运用辅助线将原三角形中处于不同位置的三个内角集中在一起,拼成一个平角,辅助线是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北京版小学一班级上册 走
- 2025年电子商务运营专员面试模拟题集与解析
- 2025年焊接技术实战模拟题集含钎焊部分及答案详解
- 【2025-2月更新】《新课标体育与健康》水平二 篮球大单元教案(共18课时)
- 2025年注册会计师考试CPA备考攻略与模拟题解析
- 2025年高级工职业技能鉴定备考指南与模拟试题详解灌区管理篇
- 2025年财务分析师招聘面试模拟题及应对技巧
- 2025学年安徽省皖东名校中考化学二模试卷
- 2025年物联网技术前沿知识中级工程师面试题集
- 2025年电力行业技术规范与安全培训试题及答案解析
- 血常规检验中的质量控制
- 高尿酸血症健康管理方案
- 秋季肌肤护理课件
- 磁粉检测培训课件
- 骨科总论教学课件
- 大单元教学培训
- 公墓建设可行性研究报告
- 2024年成都新都投资集团有限公司招聘笔试真题
- 混合痔护理教学课件
- 罐式专用运输管理制度
- 石家庄供暖管网规划方案
评论
0/150
提交评论