《货币时间价值英语》PPT课件_第1页
《货币时间价值英语》PPT课件_第2页
《货币时间价值英语》PPT课件_第3页
《货币时间价值英语》PPT课件_第4页
《货币时间价值英语》PPT课件_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

TheTimeValueofMoney,WhatisTimeValue?,WesaythatmoneyhasatimevaluebecausethatmoneycanbeinvestedwiththeexpectationofearningapositiverateofreturnInotherwords,“adollarreceivedtodayisworthmorethanadollartobereceivedtomorrow”Thatisbecausetodaysdollarcanbeinvestedsothatwehavemorethanonedollartomorrow,TheTerminologyofTimeValue,PresentValue-Anamountofmoneytoday,orthecurrentvalueofafuturecashflowFutureValue-AnamountofmoneyatsomefuturetimeperiodPeriod-Alengthoftime(oftenayear,butcanbeamonth,week,day,hour,etc.)InterestRate-Thecompensationpaidtoalender(orsaver)fortheuseoffundsexpressedasapercentageforaperiod(normallyexpressedasanannualrate),Abbreviations,PV-PresentvalueFV-FuturevaluePmt-PerperiodpaymentamountN-Eitherthetotalnumberofcashflowsorthenumberofaspecificperiodi-Theinterestrateperperiod,Timelines,PV,FV,Today,AtimelineisagraphicaldeviceusedtoclarifythetimingofthecashflowsforaninvestmentEachtickrepresentsonetimeperiod,CalculatingtheFutureValue,Supposethatyouhaveanextra$100todaythatyouwishtoinvestforoneyear.Ifyoucanearn10%peryearonyourinvestment,howmuchwillyouhaveinoneyear?,-100,?,CalculatingtheFutureValue(cont.),Supposethatattheendofyear1youdecidetoextendtheinvestmentforasecondyear.Howmuchwillyouhaveaccumulatedattheendofyear2?,-110,?,GeneralizingtheFutureValue,Recognizingthepatternthatisdeveloping,wecangeneralizethefuturevaluecalculationsasfollows:,Ifyouextendedtheinvestmentforathirdyear,youwouldhave:,CompoundInterest,NotefromtheexamplethatthefuturevalueisincreasingatanincreasingrateInotherwords,theamountofinterestearnedeachyearisincreasingYear1:$10Year2:$11Year3:$12.10Thereasonfortheincreaseisthateachyearyouareearninginterestontheinterestthatwasearnedinpreviousyearsinadditiontotheinterestontheoriginalprincipleamount,CompoundInterestGraphically,TheMagicofCompounding,OnNov.25,1626PeterMinuit,aDutchman,reportedlypurchasedManhattanfromtheIndiansfor$24worthofbeadsandothertrinkets(珠子和其他饰品).WasthisagooddealfortheIndians?Thishappenedabout371yearsago,soiftheycouldearn5%peryeartheywouldnow(in1997)have:,Iftheycouldhaveearned10%peryear,theywouldnowhave:,Thatsabout54,563Trillion(万亿)dollars!,TheMagicofCompounding(cont.),TheWallStreetJournal(17Jan.92)saysthatallofNewYorkcityrealestateisworthabout$324billion.Ofthisamount,Manhattanisabout30%,whichis$97.2billionAt10%,thisis$54,562trillion!OurU.S.GNPisonlyaround$6trillionperyear.Sothisamountrepresentsabout9,094yearsworthofthetotaleconomicoutputoftheUSA!.,CalculatingthePresentValue,Sofar,wehaveseenhowtocalculatethefuturevalueofaninvestmentButwecanturnthisaroundtofindtheamountthatneedstobeinvestedtoachievesomedesiredfuturevalue:,PresentValue:AnExample,Supposethatyourfive-yearolddaughterhasjustannouncedherdesiretoattendcollege.Aftersomeresearch,youdeterminethatyouwillneedabout$100,000onher18thbirthdaytopayforfouryearsofcollege.Ifyoucanearn8%peryearonyourinvestments,howmuchdoyouneedtoinvesttodaytoachieveyourgoal?,Annuities,Anannuityisaseriesofnominallyequalpaymentsequallyspacedintime(等时间间隔)Annuitiesareverycommon:RentMortgagepaymentsCarpaymentPensionincomeThetimelineshowsanexampleofa5-year,$100annuity,100,100,100,100,100,ThePrincipleofValueAdditivity,Howdowefindthevalue(PVorFV)ofanannuity?First,youmustunderstandtheprincipleofvalueadditivity:ThevalueofanystreamofcashflowsisequaltothesumofthevaluesofthecomponentsInotherwords,ifwecanmovethecashflowstothesametimeperiodwecansimplyaddthemalltogethertogetthetotalvalue价值相加,PresentValueofanAnnuity,Wecanusetheprincipleofvalueadditivitytofindthepresentvalueofanannuity,bysimplysummingthepresentvaluesofeachofthecomponents:,PresentValueofanAnnuity(cont.),Usingtheexample,andassumingadiscountrateof10%peryear,wefindthatthepresentvalueis:,100,100,100,100,100,62.09,68.30,75.13,82.64,90.91,379.08,PresentValueofanAnnuity(cont.),Actually,thereisnoneedtotakethepresentvalueofeachcashflowseparatelyWecanuseaclosed-formofthePVAequationinstead:,PresentValueofanAnnuity(cont.),Wecanusethisequationtofindthepresentvalueofourexampleannuityasfollows:,Thisequationworksforallregularannuities,regardlessofthenumberofpayments,TheFutureValueofanAnnuity,Wecanalsousetheprincipleofvalueadditivitytofindthefuturevalueofanannuity,bysimplysummingthefuturevaluesofeachofthecomponents:,TheFutureValueofanAnnuity(cont.),Usingtheexample,andassumingadiscountrateof10%peryear,wefindthatthefuturevalueis:,100,100,100,100,100,146.41,133.10,121.00,110.00,=610.51atyear5,TheFutureValueofanAnnuity(cont.),JustaswedidforthePVAequation,wecouldinsteaduseaclosed-formoftheFVAequation:,Thisequationworksforallregularannuities,regardlessofthenumberofpayments,TheFutureValueofanAnnuity(cont.),Wecanusethisequationtofindthefuturevalueoftheexampleannuity:,AnnuitiesDue预付年金,Thusfar,theannuitiesthatwehavelookedatbegintheirpaymentsattheendofperiod1;thesearereferredtoasregularannuitiesAannuitydueisthesameasaregularannuity,exceptthatitscashflowsoccuratthebeginningoftheperiodratherthanattheend,100,100,100,100,100,100,100,100,100,100,5-periodAnnuityDue,5-periodRegularAnnuity,PresentValueofanAnnuityDue,Wecanfindthepresentvalueofanannuitydueinthesamewayaswedidforaregularannuity,withoneexceptionNotefromthetimelinethat,ifweignorethefirstcashflow,theannuityduelooksjustlikeafour-periodregularannuityTherefore,wecanvalueanannuityduewith:,PresentValueofanAnnuityDue(cont.),Therefore,thepresentvalueofourexampleannuitydueis:,NotethatthisishigherthanthePVofthe,otherwiseequivalent,regularannuity,FutureValueofanAnnuityDue,TocalculatetheFVofanannuitydue,wecantreatitasregularannuity,andthentakeitonemoreperiodforward:,Pmt,Pmt,Pmt,Pmt,Pmt,FutureValueofanAnnuityDue(cont.),Thefuturevalueofourexampleannuityis:,Notethatthisishigherthanthefuturevalueofthe,otherwiseequivalent,regularannuity,DeferredAnnuities递延年金,Adeferredannuityisthesameasanyotherannuity,exceptthatitspaymentsdonotbeginuntilsomelaterperiodThetimelineshowsafive-perioddeferredannuity,0,1,2,3,4,5,100,100,100,100,100,6,7,PVofaDeferredAnnuity,Wecanfindthepresentvalueofadeferredannuityinthesamewayasanyotherannuity,withanextrasteprequiredBeforewecandothishowever,thereisanimportantruletounderstand:WhenusingthePVAequation,theresultingPVisalwaysoneperiodbeforethefirstpaymentoccurs,PVofaDeferredAnnuity(cont.),TofindthePVofadeferredannuity,wefirstfindusethePVAequation,andthendiscountthatresultbacktoperiod0Hereweareusinga10%discountrate,0,1,2,3,4,5,0,0,100,100,100,100,100,6,7,PV2=379.08,PV0=313.29,PVofaDeferredAnnuity(cont.),Step1:,Step2:,FVofaDeferredAnnuity,ThefuturevalueofadeferredannuityiscalculatedinexactlythesamewayasanyotherannuityTherearenoextrastepsatall,UnevenCashFlows,VeryoftenaninvestmentoffersastreamofcashflowswhicharenoteitheralumpsumoranannuityWecanfindthepresentorfuturevalueofsuchastreambyusingtheprincipleofvalueadditivity,UnevenCashFlows:AnExample(1),Assumethataninvestmentoffersthefollowingcashflows.Ifyourrequiredreturnis7%,whatisthemaximumpricethatyouwouldpayforthisinvestment?,100,200,300,UnevenCashFlows:AnExample(2),Supposethatyouweretodepositthefollowingamountsinanaccountpaying5%peryear.Whatwouldthebalanceoftheaccountbeattheendofthethirdyear?,300,500,700,Non-annualCompounding,SofarwehaveassumedthatthetimeperiodisequaltoayearHowever,thereisnoreasonthatatimeperiodcantbeanyotherlengthoftimeWecouldassumethatinterestisearnedsemi-annually,quarterly,monthly,daily,oranyotherlengthoftimeTheonlychangethatmustbemadeistomakesurethattherateofinterestisadjustedtotheperiodlength,Non-annualCompounding(cont.),Supposethatyouhave$1,000availableforinvestment.Afterinvestigatingthelocalbanks,youhavecompiledthefollowingtableforcomparison.Inwhichbankshouldyoudeposityourfunds?,Non-annualCompounding(cont.),Tosolvethisproblem,youneedtodeterminewhichbankwillpayyouthemostinterestInotherwords,atwhichbankwillyouhavethehighestfuturevalue?Tofindout,letschangeourbasicFVequationslightly:,Inthisversionoftheequationmisthenumberofcompoundingperiodsperyear,Non-annualCompounding(cont.),WecanfindtheFVforeachbankasfollows:,FirstNationalBan

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论