




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
加速度积分位移 Matlab2013-02-04 05:30:00|分类:MATLAB应用|举报|字号订阅最近做有关加速度的数据处理,需要把加速度积分成位移,网上找了找相关资料,发现做这个并不多,把最近做的总结一下吧!积分操作主要有两种方法:时域积分和频域积分,积分中常见的问题就是会产生二次趋势。关于积分的方法,在国外一个论坛上有人提出了如下说法,供参考。Double integration of raw acceleration data is a pretty poor estimate for displacement. The reason is that at each integration, you arecompounding the noise in the data.If you are dead set on working in thetime-domain, the best results come from the following steps.1. Remove the mean from your sample (now have zero-mean sample)2. Integrate once to get velocity using some rule (trapezoidal, etc.)3. Remove the mean from the velocity4. Integrate again to get displacement.5. Remove the mean. Note, if you plot this, you will see drift over time.6.To eliminate (some to most) of the drift (trend), use a least squares fit (high degree depending on data) to determine polynomial coefficients.7. Remove the least squares polynomial function from your data.A much better way to get displacement from acceleration data is to work in the frequency domain. To do this, follow these steps.1. Remove the mean from the accel. data2. Take the Fourier transform (FFT) of the accel. data.3. Convert the transformed accel. data to displacement data by dividing each element by -omega2, where omega is the frequency band.4. Now take the inverse FFT to get back to the time-domain and scale your result.This will give you a much better estimate of displacement.说到底就是频域积分要比时域积分效果更好,实际测试也发现如此。原因可能是时域积分时积分一次就要去趋势,去趋势就会降低信号的能量,所以最后得到的结果常常比真实幅值要小。下面做一些测试,对一个正弦信号的二次微分做两次积分,正弦频率为50Hz,采样频率1000Hz,恢复效果如下时域积分频域积分可见恢复信号都很好(对于50Hz是这样的效果)。分析两种方法的频率特性曲线如下时域积分频域积分可以看到频域积分得到信号更好,时域积分随着信号频率的升高恢复的正弦幅值会降低。对于包含两个正弦波的信号,频域积分正常恢复信号,时域积分恢复的高频信息有误差;对于有噪声的正弦信号,噪声会使积分结果产生大的趋势项(不是简单的二次趋势),如下图对此可以用滤波的方法将大的趋势项去掉。测试的代码如下% 测试积分对正弦信号的作用clcclearclose all% 原始正弦信号ts = 0.001;fs = 1/ts;t = 0:ts:1000*ts;f = 50;dis = sin(2*pi*f*t); % 位移vel = 2*pi*f.*cos(2*pi*f*t); % 速度acc = -(2*pi*f).2.*sin(2*pi*f*t); % 加速度% 多个正弦波的测试% f1 = 400;% dis1 = sin(2*pi*f1*t); % 位移% vel1 = 2*pi*f1.*cos(2*pi*f1*t); % 速度% acc1 = -(2*pi*f1).2.*sin(2*pi*f1*t); % 加速度% dis = dis + dis1;% vel = vel + vel1;% acc = acc + acc1;% 结:频域积分正常恢复信号,时域积分恢复加入的高频信息有误差% 加噪声测试acc = acc + (2*pi*f).2*0.2*randn(size(acc);% 结:噪声会使积分结果产生大的趋势项figureax(1) = subplot(311);plot(t, dis), title(位移)ax(2) = subplot(312);plot(t, vel), title(速度)ax(3) = subplot(313);plot(t, acc), title(加速度)linkaxes(ax, x);% 由加速度信号积分算位移disint, velint = IntFcn(acc, t, ts, 2);axes(ax(2);hold onplot(t, velint, r), legend(原始信号, 恢复信号)axes(ax(1);hold onplot(t, disint, r), legend(原始信号, 恢复信号)% 测试积分算子的频率特性n = 30;amp = zeros(n, 1);f = 5:30 40:10:480;figurefor i = 1:length(f)fi = f(i);acc = -(2*pi*fi).2.*sin(2*pi*fi*t); % 加速度disint, velint = IntFcn(acc, t, ts, 2); % 积分算位移amp(i) = sqrt(sum(disint.2)/sqrt(sum(dis.2);plot(t, disint)drawnow%pauseendclosefigureplot(f, amp)title(位移积分的频率特性曲线)xlabel(f)ylabel(单位正弦波的积分位移幅值)以上代码中使用IntFcn函数实现积分,它是封装之后的函数,可以实现时域积分和频域积分,其代码如下% 积分操作由加速度求位移,可选时域积分和频域积分function disint, velint = IntFcn(acc, t, ts, flag)if flag = 1% 时域积分disint, velint = IntFcn_Time(t, acc);velenergy = sqrt(sum(velint.2);velint = detrend(velint);velreenergy = sqrt(sum(velint.2);velint = velint/velreenergy*velenergy;disenergy = sqrt(sum(disint.2);disint = detrend(disint);disreenergy = sqrt(sum(disint.2);disint = disint/disreenergy*disenergy; % 此操作是为了弥补去趋势时能量的损失% 去除位移中的二次项p = polyfit(t, disint, 2);disint = disint - polyval(p, t);else% 频域积分velint =iomega(acc, ts, 3, 2);velint = detrend(velint);disint =iomega(acc, ts, 3, 1);% 去除位移中的二次项p = polyfit(t, disint, 2);disint = disint - polyval(p, t);endend其中时域积分的子函数如下% 时域内梯形积分function xn, vn = IntFcn_Time(t, an)vn = cumtrapz(t, an);vn = vn - repmat(mean(vn), size(vn,1), 1);xn = cumtrapz(t, vn);xn = xn - repmat(mean(xn), size(xn,1), 1);end频域积分的子函数如下(此代码是一个老外编的,在频域内实现积分和微分操作)function dataout =iomega(datain, dt, datain_type, dataout_type)%IOMEGA is a MATLAB script for converting displacement, velocity, or%acceleration time-series to either displacement, velocity, or%acceleration times-series. The script takes an array of waveform data%(datain), transforms into the frequency-domain in order to more easily%convert into desired output form, and then converts back into the time%domain resulting in output (dataout) that is converted into the desired%form.%Variables:%-%datain=input waveform data of type datain_type%dataout=output waveform data of type dataout_type%dt=time increment (units of seconds per sample)%1 - Displacement%datain_type=2 - Velocity%3 - Acceleration%1 - Displacement%dataout_type =2 - Velocity%3 - Acceleration%Make sure that datain_type and dataout_type are either 1, 2 or 3if (datain_type 3)error(Value for datain_type must be a 1, 2 or 3);elseif (dataout_type 3)error(Value for dataout_type must be a 1, 2 or 3);end%Determine Number of points (next power of 2), frequency increment%and Nyquist frequencyN = 2nextpow2(max(size(datain);df = 1/(N*dt);Nyq = 1/(2*dt);%Save frequency arrayiomega_array = 1i*2*pi*(-Nyq : df : Nyq-df);iomega_exp = dataout_type - datain_type;%Pad datain array with zeros (if needed)size1 = size(datain,1);size2 = size(datain,2);if (N-size1 = 0 & N-size2 = 0)if size1 size2datain = vertcat(datain,zeros(N-size1,1);elsedatain = horzcat(datain,zeros(1,N-size2);endend%Transform datain into frequency domain via FFT and shift output (A)%so that zero-frequency amplitude is in the middle of the array%(instead of the beginning)A = fft(datain);A = fftshift(A);%Convert datain of type datain_type to type dataout_typefor j = 1 : Nif iomega_array(j) = 0A(j) = A(j) * (iomega_array(j) iomega_exp);elseA(j) = complex(0.0,0.0);endend%Shift new frequency-amplitude array back to MATLAB format and%tra
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 早餐搭配课件
- 早教知识技能培训课件
- 我与地坛语言艺术特色解读教学教案
- 高中物理力学公式定理详解与实践教案
- 乡村科技助力农业发展项目协议
- 2025年美容师(中级)美容美发行业客户关系管理管理理论知识考核试卷
- 现代诗歌的语言特点:初三语文课本教案
- 宁德初一上册数学试卷
- 2024年滁州市清流原著幼儿园招聘笔试真题
- 巴中南江县考核引进高中教师考试真题2024
- 《俗世奇人》整本书导读课件
- 餐饮管理安全管理制度
- 传统白酒生产项目商业计划书
- 2025年教师资格证考试综合素质(中学)试题及答案
- 江苏省淮安市2024-2025学年高一下学期期末考试物理试卷(解析版)
- 《基孔肯雅热防控技术指南(2025年版)》解读课件
- 2025年呼伦贝尔市生态环境局所属事业单位引进人才(2人)模拟试卷附答案详解(综合卷)
- 2025年中国建设银行招聘考试(综合知识)历年参考题库含答案详解(5套)
- 铁道概论(第八版)佟立本主编
- 施工现场签证单(模板)
- “基础教育精品课”PPT课件模板
评论
0/150
提交评论