




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
探讨定积分不等式的证明方法摘要:文章针对被积函数的特性,给出了几种关于定积分不等式的有效证明方法。关键词:定积分 不等式 证法不等式的证明在高等数学的学习中很常见,但关于定积分不等式的证明却一直是一个难点。要证明定积分不等式,首先要看被积函数,其性质确定证明方法。本文根据被积函数的连续性、单调性、可导性等分别给出几种证法。1运用定积分中值定理证明定积分中值定理是将定积分转化为连续函数在该区间上某点的函数值与该区间长度的乘积,即将定积分转化为函数来证明不等式。例1:设在0,1上连续且单调不增,证明0,1有证明:由原不等式变形得,即是要证:,对左式,在0,1上连续,故由定积分中值定理知:使 ,同理对右式:使,显然,12又f(x)在0,1上单调不增,(1)(2)故原不等式成立.定积分中值定理的运用直观易懂,它的条件也极其简单,易于掌握。2运用辅助函数证明构造辅助函数F(x)证明不等式,首先是做函数将要证结论中的积分上限(下限)换成x,移项使不等式的一边为零,另一边的表达式即是辅助函数。然后再求F(x),并运用单调性及区间端点值特性证明不等式。例2:设在a,b上连续,且0.试证:证明:构造辅助函数(将b换成x),则 = =0,又,即单调不减,又,故该题构造出积分上限函数,其目的是用单调性来证明不等式。这种方法开门见山、直截了当。3运用定积分的性质和几何意义证明与定积分的概念相联系“以直代曲”的“近似代替”的思想,加上积分的几何直观使得不等式的证明变得更加简捷。例:证明不等式证明:因为时,两端积分得: 例:设时,证明不等式证明:,根据定积分的几何意义知:,即.本题关键在于深刻领悟定积分概念的由来,即求曲边梯形的面积问题推导的四个步骤:分割、取点、作和与求极限,这里充分运用了“近似代替”的几何直观来加以证明。4运用拉格朗日中值定理证明利用拉格朗日中值定理证明不等式,首先要构造满足中值定理条件的函数和区间,然后进行不等式放缩,再用定积分比较定理、估值定理或函数的绝对值不等式等。例5:设在上可导,且,试证:.证明:由题设,在a,b上都满足拉氏中值定理的条件,于是有:,两边在a,b上定积分得:.此题运用拉格朗日中值定理简直如行云流水,如果采用其他办法显然比较繁琐。5运用Taylor公式证明当已知被积函数f(x)二阶或二阶以上可导且又知最高阶导数的符号时,通常采用泰勒展开式来证明。首先要写出f(x)的泰勒展开式,然后根据题意写出某些点的泰勒展开式,再进行适当的放缩以变成不等式,最后用定积分的性质进行处理。例6:设在上单调增加,且0,证明证明:先证左不等号:,单调增加,所以故 (1)再证右不等号:,在点x处的Taylor展式为:,其中在t与x之间,因0,所以,将分别代入上式并相加得:,将此式在上积分得:,有,故 (2)综合(1)、(2),原不等式得证.Taylor公式的应用在大学数学的学习中是一个绝对的难点,往往很难掌握。一个题目在你用其他方式很难解决时,Taylor公式常会给你意想不到的突破。6运用柯西斯瓦兹不等式证明柯西斯瓦兹不等式:例7:设在0,1上有一阶连续导数且,试证:.证明:,又,所以,因 在0,1上可导,所以在0,1上连续,由柯西斯瓦兹不等式得:,即是.柯西斯瓦兹不等式是大学数学中的又一难点,虽然记忆起来并不困难,但应用是灵活多变的。7运用重积分证明重积分要化为定积分来计算,这是众所周知的事实,但反之定积分的乘积往往又可以化为重积分,将定积分不等式的证明化为重积分不等式来证明,也是一种常见的方法。例8:设是在0,1上单调增加的连续函数,试证:.证明:设 = =(1)同样 (2)(1)+(2)可得,由于在0,1上单调增加,故,从而即总的来说,证明不等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 以党建促发展活动方案
- 仪陇老年敬老活动方案
- 任城区文明上网活动方案
- 湖北省黄冈市蕲春县实验高级中学2024-2025学年高三下学期第二次模拟考试数学试题(解析)
- 企业交流活动方案
- 企业党日活动方案
- 企业内训师活动方案
- 企业包场电影活动方案
- 企业周年活动策划方案
- 企业培训线下活动方案
- 05G514-3 12m实腹式钢吊车梁(中级工作制 A4 A5 Q345钢)
- 《Python少儿编程》PPT课件(共11章)第二章 Python 编程基础
- 生态大学景观校园的营建
- 智慧树知到【红色旅游(南昌大学)】章节测试及答案
- GB/T 12250-2005蒸汽疏水阀术语、标志、结构长度
- 注册安全工程师安全生产技术培训课件
- 湘少版英语三至六年级单词表(带音标)
- SCB系列干式变压器使用说明书
- 202x检察院工作总结汇报、述职报告PPT模板
- 高效液相色谱法分析(三聚氰胺)原始记录1
- 全国公共英语等级考试三教材-Monolog-and-passage原文及翻译-一字一句输入的
评论
0/150
提交评论