



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.1 正弦定理和余弦定理(练习)学习目标 1. 进一步熟悉正、余弦定理内容;2. 掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形教学重点在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。教学难点正、余弦定理与三角形的有关性质的综合运用。学习过程一、课前准备复习1:在解三角形时已知三边求角,用 定理;已知两边和夹角,求第三边,用 定理;已知两角和一边,用 定理复习2:在ABC中,已知 A,a25,b50,解此三角形二、新课导学 学习探究探究:在ABC中,已知下列条件,解三角形. A,a25,b50; A,a,b50; A,a50,b50.思考:解的个数情况为何会发生变化?新知:用如下图示分析解的情况(A为锐角时)试试:1. 用图示分析(A为直角时)解的情况?2用图示分析(A为钝角时)解的情况? 典型例题例1. 在ABC中,已知,试判断此三角形的解的情况变式:在ABC中,若,则符合题意的b的值有_个例2. 在ABC中,求的值变式:在ABC中,若,且,求角C三、总结提升 学习小结1. 已知三角形两边及其夹角(用余弦定理解决);2. 已知三角形三边问题(用余弦定理解决);3. 已知三角形两角和一边问题(用正弦定理解决);4. 已知三角形两边和其中一边的对角问题(既可用正弦定理,也可用余弦定理,可能有一解、两解和无解三种情况) 知识拓展在ABC中,已知,讨论三角形解的情况 :当A为钝角或直角时,必须才能有且只有一解;否则无解;当A为锐角时,如果,那么只有一解;如果,那么可以分下面三种情况来讨论:(1)若,则有两解;(2)若,则只有一解;(3)若,则无解学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 已知a、b为ABC的边,A、B分别是a、b的对角,且,则的值=( ).A. B. C. D. 2. 已知在ABC中,sinAsinBsinC357,那么这个三角形的最大角是( ). A135 B90 C120 D1503. 如果将直角三角形三边增加同样的长度,则新三角形形状为( ).A锐角三角形 B直角三角形C钝角三角形 D由增加长度决定4. 在ABC中,sinA:sinB:sinC4:5:6,则cosB 5. 已知ABC中,试判断ABC的形状 课后作业 1. 在AB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 拖拉机柴油发动机装试工基础知识考核试卷及答案
- 氨纶纤维混纺工艺考核试卷及答案
- 护岸植被工艺考核试卷及答案
- 物业工程入户维修标准化培训课件
- 园林技术面试题目及答案
- 应试会计面试题库及答案
- 银行资产保全试题及答案
- 银行知识考试试题及答案
- 银行招聘面试题及答案
- 银行运营管理考试题目及答案
- 2017子宫肌瘤教学查房ppt课件
- 2019版外研社高中英语选择性必修四单词默写表
- 《活法》稻盛和夫著读书分享精品PPT课件
- (高)第10章-药物经济学评价
- 洗碗(课堂PPT)课件
- 常规变电站继电保护设备安装调试技术
- 提高住院患者大小便标本留取率
- 桥梁施工专项施工方案
- 贷款催收话术信贷公司催收话术.doc
- 大学生应征入伍学费补偿申请表doc
- 辽宁交通2007检测收费标准
评论
0/150
提交评论