9.2中心对称与中心对称图形.pptx_第1页
9.2中心对称与中心对称图形.pptx_第2页
9.2中心对称与中心对称图形.pptx_第3页
9.2中心对称与中心对称图形.pptx_第4页
9.2中心对称与中心对称图形.pptx_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中心对称与中心对称图形,(1)把其中一个图案绕点O旋转180,你有什么发现?,重合,重合,观察,(2)线段AC,BD相交于点O,OA=OC,OB=OD.把OCD绕点O旋转180,你有什么发现?,像这样把一个图形绕着某一点旋转180度,如果它能够和另一个图形重合,那么,我们就说这两个图形关于这个点对称或中心对称,这个点就叫对称中心,这两个图形中的对应点,叫做关于中心的对称点.,观察:C.A.E三点的位置关系怎样?线段AC.AE的大小关系呢?,下图中ABC与ABC关于点O是成中心对称的,你能从图中找到哪些等量关系?,探索:,A,B,C,A,B,C,O,(1)OA=OA、OB=OB、OC=OC,(2)ABCABC,归纳:(1)中心对称的两个图形,对称点所连线段都经过对称中心,并且被对称中心平分.,(2)关于中心对称的两个图形是全等形。,想一想,中心对称与轴对称有什么区别?又有什么联系?,轴对称图形,两个图形成轴对称,A,A,B,B,O,2、线段的中心对称线段的作法,A,O,A,1、点的中心对称点的作法,灵活运用,体会内涵,以点O为对称中心,作出点A的对称点A;,以点O为对称中心,作出线段AB的对称线段点AB,点A即为所求的点,例1(1)如图,选择点O为对称中心,画出与ABC关于点O对称的ABC.,解:,A,C,B,ABC即为所求的三角形。,例1(2)已知四边形ABCD和点O,画四边形ABCD,使它与已知四边形关于这一点对称。,A,B,A,C,B,D,D,O,C,四边形ABCD即为所求的图形。,画一个与已知四边形ABCD中心对称图形。(1)以顶点A为对称中心;(2)以BC边的中点为对称中心。,提高练习,E,F,G,M,N,如图,已知ABC与ABC中心对称,求出它们的对称中心O。,深入理解,解法一:根据观察,B、B应是对应点,连结BB,用刻度尺找出BB的中点O,则点O即为所求(如图),O,深入理解,你用什么方法识别两个图形是否关于某点中心对称?,A,C,C,A,B,B,方法1:将其中一个图形绕某一点旋转180度,如果能够与另一个完全重合,那么它们关于这一点中心对称。方法2:如果两个图形的对应点连成的线段都经过某一点,并且都被该点平分,那么这两个图形一定关于这一点成中心对称.,O,如果一个图形绕一个点旋转180后,能和原来的图形互相重合,那么这个图形叫做中心对称图形;这个点叫做它的对称中心;互相重合的点叫做对称点.,观察与发现,B,A,C,D,图中_是中心对称图形,对称中心是_,点O,点A的对称点是_,点D的对称点是_,点C,点B,(1),(2),(3),(4),旋转图形(1),旋转图形(2),旋转图形(3),旋转图形(4),下列图形是中心对称图形吗?,问题与讨论,旋转,都是中心对称图形,观察图形,并回答下面的问题:()哪些只是轴对称图形?()哪些只是中心对称图形?()哪些既是轴对称图形,又是中心对称图形?,(),(),(),(),(),(),(3)(4)(6),(1),(2)(5),巩固提高,2.在线段、角、等腰三角形、等腰梯形、平行四边形、矩形、菱形、正方形和圆中,是轴对称图形的有_,是中心对称图形的有_,既是轴对称图形又是中心对称图形的有_.,B,巩固提高,在26个英文大写正体字母中,哪些字母是中心对称图形?哪些字母是轴对称图形?,ABCDEFGHIJKLMNOPQRSTUVWXYZ,工农业生产旋转的物体必须具有稳定性,而中心对称的设计恰恰满足了旋转物体的这一需求。因而在工农业生产制作转动工具时,都不可避免地考虑应用中心对称的设计,小的如日常生活中单车、闹钟内的齿轮,电风扇的扇叶;大的如推动飞机、轮船的轮桨,风力发电用的风车等等。另外,在日常使用的一些生活工艺品(如:地毯、挂毯),也不难发现中心对称的影子!,小结,中心对称与中心对称图形有什么区别与联系?,知识巩固,2、中心对称有何性质?,1、什么叫中心对称和中心对称图形?,(2)关于中心对称图形的两个图形,对称点的连线都经过对称中心,并且被对称中心平分。,(1)关于中心对

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论