已阅读5页,还剩30页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.,1,单纯形法求解动态演示,在求解LP问题时,有人给出了图解法,但对多维变量时,却无能为力,于是美国数学家GBDantgig(丹捷格)发明了一种“单纯形法”的代数算法,尤其是方便于计算机运算。这是运筹学史上最辉煌的阶段。,.,2,线性规划问题标准型的矩阵形式:MaxZ=CX(a)s.t.AX=b(b)X0(c),a11a12.a1nb1A=a21a22.a2nb=b2am1am2.amnbm,一、关于标准型解的若干基本概念,.,3,基矩阵示例:,0,0,0,0,3,2,0,2,0,0,0,1,0,1,0,x1,x2,x4,x3,0,0,1,3,0,0,3,2,1,=,目标函数,约束条件,行列式0基矩阵,X1,x2,x3为基变量,x4为非基变量,.,4,因为B为基,故有XB+B-1NXN=B-1b,解得可行解XB=B-1b-B-1NXN,代入目标函数Z,Z=CBB-1b+(CN-CBB-1N)XN令非基变量XN=0,则有XT=(XB,XN)T=(B-1b,0)TZ=CBB-1b,设A=(B,N)(B为一个基,即线性无关向量组R(A)=R(B))XT=(XB,XN)T(XB为基变量,XN为非基变量)C=(CB,CN)(CB为基变量系数,CN为非基变量系数)则有:Z=(CB,CN)(XB,XN)T=CBXB+CNXNAX=(B,N)(XB,XN)T=BXB+NXN=b,1、单纯形法原理:,.,5,Z=CBB-1b+(CN-CBB-1N)XN,如果CN-CBB-1N小于0,无论XN取任何大于0值,只会让Z变小,因此我们可以通过CN-CBB-1N来判断Z取得是不是最大值。如果存在一个CN-CBB-1N大于0,则说明Z的值会随着XN增大而增大,说明Z有调整的余地。定理一:若某个基本可行解所对应的检验向量CN-CBB-1N=0,.,20,初始单纯形表,可行解XB=B-1b-B-1NXN=0,.,21,初始单纯形表,.,22,初始单纯形表,.,23,初始单纯形表,.,24,初始单纯形表,.,25,初始单纯形表,.,26,初始单纯形表,.,27,初始单纯形表,.,28,初始单纯形表,.,29,初始单纯形表,x1,50,x1,50,.,30,初始单纯形表,.,31,初始单纯形表,.,32,初始单纯形表,.,33,初始单纯形表,.,34,初始单纯形表,.,35,表格中,检验系数j全部小于或等于0,根据判断规则,Z
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广州市海珠区华洲街道招考计生专职工作人员易考易错模拟试题(共500题)试卷后附参考答案
- 广东财政厅所属事业单位2025年下半年招考人员(第二批)易考易错模拟试题(共500题)试卷后附参考答案
- 机架喷漆承包协议书
- 供应代理商合同范本
- 公司押金协议书范本
- 医疗器械价合同范本
- 机械台班租赁协议书
- 加装电梯内部协议书
- 医用酒精销售协议书
- 格力电器合作协议书
- 酒店转租合同范本
- 园林花卉病虫害防治技术
- C++可视化编程技术研究与应用
- 医疗机构依法执业自查管理办法
- 2024年甘肃省普通高中信息技术会考试题(含24套)
- 真空干燥箱校准规范
- 也是冬天也是春天:升级彩插版
- 滑触线施工方案
- 小学二年级上册书法教案
- 垃圾池施工方案
- 儿内科神经肌肉系统疾病诊疗规范2023版
评论
0/150
提交评论