广东省广州市海珠区2020学年高二数学下学期期末考试试题 理(含解析)_第1页
广东省广州市海珠区2020学年高二数学下学期期末考试试题 理(含解析)_第2页
广东省广州市海珠区2020学年高二数学下学期期末考试试题 理(含解析)_第3页
广东省广州市海珠区2020学年高二数学下学期期末考试试题 理(含解析)_第4页
广东省广州市海珠区2020学年高二数学下学期期末考试试题 理(含解析)_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省广州市海珠区2020学年高二数学下学期期末考试试题 理(含解析)一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.若复数满足 ,其中为虚数单位,则A. B. C. D. 【答案】B【解析】【分析】由复数的除法运算法则化简,由此可得到复数【详解】由题可得;故答案选B【点睛】本题主要考查复数的除法运算法则,属于基础题。2.若函数的导函数的图像关于轴对称,则的解析式可能为A. B. C. D. 【答案】C【解析】【分析】依次对选项求导,再判断导数的奇偶性即可得到答案。【详解】对于A,由可得,则为奇函数,关于原点对称;故A不满足题意;对于B,由可得,则,所以为非奇非偶函数,不关于轴对称,故B不满足题意;对于C,由可得,则为偶函数,关于轴对称,故C满足题意,正确;对于D,由可得,则,所以非奇非偶函数,不关于轴对称,故D不满足题意;故答案选C【点睛】本题主要考查导数的求法,奇偶函数的判定,属于基础题。3.设,这两个正态分布密度曲线如图所示下列结论中正确的是A. ,B. C. ,D. 【答案】D【解析】【分析】由正态分布的性质,结合图像依次分析选项即可得到答案。【详解】由题可得曲线的对称轴为,曲线的对称轴为,由图可得,由于表示标准差,越小图像越瘦长,故,故A,C不正确;根据图像可知,;所以,故C不正确,D正确;故答案选D【点睛】本题考查正态分布曲线的特点以曲线所表示的意义,考查正态分布函数中两个特征数均值和方差对曲线的位置和形状的影响,正态分布曲线关于对称,且越大图像越靠右边,表示标准差,越小图像越瘦长,属于基础题。4.安排4名志愿者完成5项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有A. 120种B. 180种C. 240种D. 480种【答案】C【解析】【分析】根据题意,分两步进行分析:先将5项工作分成4组,再将分好的4组进行全排,对应4名志愿者,分别求出每一步的情况数,由分步计数原理计算即可得到答案。【详解】根据题意,分2步进行分析:(1)先将5项工作分成4组,有种分组方法;(2)将分好4组进行全排,对应4名志愿者,有种情况;分步计数原理可得:种不同的安排方式。故答案选C【点睛】本题考查排列、组合的综合应用,注意题目中“每人至少完成1项,每项工作由1人完成”的要求,属于基础题。5.近年来随着我国在教育科研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升某品牌公司一直默默拓展海外市场,在海外设了多个分支机构,现需要国内公司外派大量中青年员工该企业为了解这两个年龄层员工是否愿意被外派工作的态度,按分层抽样的方式从中青年员工中随机调查了位,得到数据如下表:愿意被外派不愿意被外派合计中年员工青年员工合计由并参照附表,得到的正确结论是附表:0.100.010.0012.7066.63510.828A. 在犯错误的概率不超过10%的前提下,认为 “是否愿意外派与年龄有关”;B. 在犯错误的概率不超过10%的前提下,认为 “是否愿意外派与年龄无关”;C. 有99% 以上的把握认为“是否愿意外派与年龄有关”;D. 有99% 以上的把握认为“是否愿意外派与年龄无关”【答案】A【解析】【分析】由公式计算出的值,与临界值进行比较,即可得到答案。【详解】由题可得:故在犯错误的概率不超过10%的前提下,认为 “是否愿意外派与年龄有关”, 有90% 以上的把握认为“是否愿意外派与年龄有关,所以答案选A;故答案选A【点睛】本题主要考查独立性检验,解题的关键是正确计算出的值,属于基础题。6.的展开式中的系数是A. 20B. 5C. 5D. 20【答案】A【解析】【分析】利用二项式展开式的通项公式,求解所求项的系数即可详解】由二项式定理可知:;要求的展开式中的系数,所以令,则;所以的展开式中的系数是是-20;故答案选A【点睛】本题考查二项式定理的通项公式的应用,属于基础题。7.在5张扑克牌中有3张“红心”和2张“方块”,如果不放回地依次抽取2张牌,则在第一次抽到“红心”的条件下,第二次抽到“红心”的概率为A. B. C. D. 【答案】D【解析】【分析】因为是不放回抽样,故在第一次抽到“红心”时,剩下的4张扑克中有2张“红心”和2张“方块”,根据随机事件的概率计算公式,即可计算第二次抽到“红心”的概率。【详解】因为是不放回抽样,故在第一次抽到“红心”的条件下,剩下的4张扑克中有2张“红心”和2张“方块”,第二次抽取时,所有的基本事件有4个,符合“抽到红心”的基本事件有2个,则在第一次抽到“红心”的条件下,第二次抽到“红心”的概率为;故答案选D【点睛】本题给出无放回抽样模型,着重考查抽样方法的理解和随机事件的概率等知识,属于基础题。8.“杨辉三角” 是中国古代重要的数学成就,在南宋数学家杨辉所著的详解九章算法一书中出现,它比西方的“帕斯卡三角形”早了300多年,如图是杨辉三角数阵,记为图中第行各个数之和,为的前项和,则A. 1024B. 1023C. 512D. 511【答案】B【解析】【分析】依次算出前几行的数值,然后归纳总结得出第行各个数之和的通项公式,最后利用数列求和的公式,求出【详解】由题可得:,依次下推可得:,所以为首项为1,公比为2的等比数列,故;故答案选B【点睛】本题主要考查杨辉三角的规律特点,等比数列的定义以及前项和的求和公式,考查学生归纳总结和计算能力,属于基础题。9.若函数至少有1个零点,则实数的取值范围是A. B. C. D. 【答案】C【解析】【分析】令,则函数至少有1个零点等价于函数至少有1个零点,对函数求导,讨论和时,函数的单调性,以及最值的情况,即可求出满足题意的实数的取值范围。【详解】由题可得函数的定义域为;令,则,函数至少有1个零点等价于函数至少有1个零点;(1)当时,则在上恒成立,即函数在单调递增,当时,当时,由零点定理可得当时,函数在有且只有一个零点,满足题意;(2)当时,令,解得:,令,解得:,则函数在上单调递增,在上单调递减,当时,所以要使函数至少有1个零点,则,解得:综上所述:实数的取值范围是:故答案选C【点睛】本题主要考查利用导数研究函数的零点个数的问题,由导数研究函数的单调区间以及最值是解题的关键,属于中档题。10.某射手每次射击击中目标的概率为,这名射手进行了10次射击,设为击中目标的次数,则=A. B. C. D. 【答案】A【解析】【分析】利用次独立重复实验中恰好发生次的概率计算公式以及方差的计算公式,即可得到结果。【详解】由题可得随机变量服从二项分布 ;由,可得: ,解得:故答案选A【点睛】本题主要考查二项分布概率和方差的计算公式,属于基础题。11.从正方体六个面的对角线中任取两条作为一对,其中所成的角为的共有( )A. 60对B. 48对C. 30对D. 24对【答案】B【解析】试题分析:正方体的面对角线共有12条,两条为一对,共有=66条,同一面上的对角线不满足题意,对面的面对角线也不满足题意,一组平行平面共有6对不满足题意的直线对数,不满足题意的共有:36=18从正方体六个面的对角线中任取两条作为一对其中所成的角为60的共有:66-18=48故选B考点:排列组合知识,计数原理,空间想象能力12.设函数(为自然对数的底数),若曲线上存在点使得,则的取值范围是A. B. C. D. 【答案】D【解析】【分析】法一:考查四个选项,发现有两个特殊值区分开了四个选项,0出现在了A,B两个选项的范围中,出现在了B,C两个选项的范围中,故通过验证参数为0与时是否符合题意判断出正确选项。法二:根据题意可将问题转化为在上有解,分离参数得到,利用导数研究的值域,即可得到参数的范围。【详解】法一:由题意可得,而由可知,当时,为增函数,时, 不存在使成立,故A,B错;当时,当时,只有时才有意义,而,故C错故选D法二:显然,函数是增函数,由题意可得,而由可知,于是,问题转化为在上有解由,得,分离变量,得,因为,所以,函数在上是增函数,于是有,即,应选D【点睛】本题是一个函数综合题,方法一的切入点是观察四个选项中与不同,结合排除法以及函数性质判断出正确选项,方法二是把问题转化为函数的最值问题,利用导数进行研究,属于中档题。二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卡上.13.已知为虚数单位,复数在复平面内对应的点在直线上,则的共轭复数_【答案】【解析】【分析】把复数对应的点的坐标代入直线上,由此得到复数,即可求出答案【详解】复数在复平面内对应的点为,代入直线,可得,解得:,故复数,所以复数的共轭复数;故答案为【点睛】本题主要考查复数对应点的坐标以及与共轭复数的关系,属于基础题。14.记曲线与直线,所围成封闭图形的面积为,则_【答案】【解析】【分析】由曲线与直线联立,求出交点,以确定定积分中的取值范围,最后根据定积分的几何意义表示出区域的面积,根据定积分公式即可得到答案。【详解】联立 ,得到交点为,故曲线与直线,所围成封闭图形的面积;故答案为【点睛】本题考查利用定积分求面积,确定被积区间与被积函数是解题的关键,属于基础题。15.直角三角形中,两直角边分别为,则外接圆面积为类比上述结论,若在三棱锥中,、两两互相垂直且长度分别为,则其外接球的表面积为_【答案】【解析】【分析】直角三角形外接圆半径为斜边长的一半,由类比推理可知若三棱锥的三条侧棱两两互相垂直且长度分别为,将三棱锥补成一个长方体,其外接球的半径为长方体体对角线长的一半。【详解】由类比推理可知:以两两垂直的三条侧棱为棱,构造棱长分别为的长方体,其体对角线就是该三棱锥的外接球直径,则半径所以表面积【点睛】本题考查类比推理的思想以及割补思想的运用,考查类用所学知识分析问题、解决问题的能力,属于基础题。16.若曲线与直线满足:与在某点处相切;曲线在附近位于直线的异侧,则称曲线与直线“切过”下列曲线和直线中,“切过”的有_(填写相应的编号)与 与 与与 与【答案】【解析】【分析】理解新定义的意义,借助导数的几何意义逐一进行判断推理,即可得到答案。【详解】对于,所以是曲线在点 处的切线,画图可知曲线在点附近位于直线的两侧,正确;对于,因为,所以不是曲线:在点处的切线,错误;对于,,,在的切线为,画图可知曲线在点附近位于直线的同侧,错误;对于,在点处的切线为,画图可知曲线:在点附近位于直线的两侧,正确;对于,在点处的切线为,图可知曲线:在点附近位于直线的两侧,正确【点睛】本题以新定义的形式对曲线在某点处的切线的几何意义进行全方位的考查,解题的关键是已知切线方程求出切点,并对初等函数的图像熟悉,属于中档题。三、解答题:本大题共6小题,共70分解答应写出文字说明,证明过程或演算步骤.17.已知直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为(1)求直线的普通方程及曲线的直角坐标方程;(2)设直线与曲线交于两点,求的值【答案】(1),(2)【解析】【分析】(1)在直线的参数方程中消去参数可得出直线的普通方程,将曲线的极坐标方程先利用两角和的正弦公式展开,再等式两边同时乘以,再代入代入化简可得出曲线的直角坐标方程;(2)解法一:将直线的参数方程与曲线的普通方程联立,得到关于的二次方程,列出韦达定理,由弦长公式得可求出;解法二:计算圆心到直线的距离,并求出圆的半径,利用勾股定理以及垂径定理得出可计算出;解法三:将直线的方程与曲线的直角坐标方程联立,消去,得到关于的一元二次方程,列出韦达定理,利用弦长公式可计算出(其中为直线的斜率)。【详解】(1)由直线的参数方程,消去参数得,即直线普通方程为.对于曲线,由,即,,曲线的直角坐标方程为.(2)解法一:将代入的直角坐标方程,整理得,,.(2)解法二:曲线的标准方程为,曲线是圆心为,半径的圆.设圆心到直线:的距离为,则.则.(2) 解法三:联立,消去整理得,解得,.将,分别代入得,所以,直线与圆的两个交点是.所以,.【点睛】本题考查参数方程、极坐标方程与普通方程的转化,考查直线参数方程中的几何意义,同时也考查了直线截圆所得弦长的计算,一般而言,可以采用以下三种解法:(1)几何法:求出圆的半径,以及圆心到直线的距离,则直线截圆所得弦长为;(2)代数法:将直线的参数方程(为参数,为倾斜角)与圆的普通方程联立,得到关于的二次方程,结合韦达定理与弦长公式计算;将直线的普通方程与圆的普通方程联立,消去或,得到关于另外一个元的二次方程,利用弦长公式或来计算(其中为直线的斜率)。18.已知函数(1)求函数的单调区间;(2)求函数在区间上的最大值和最小值【答案】(1)单调递增区间为和,单调递减区间为(2)最大值为6,,最小值为【解析】【分析】(1)求出定义域和导数,由导数大于零,可得增区间,由导数小于零,可得减区间。(2)由(1)可得函数在区间上的单调性,由单调性即可求出极值,与端点值进行比较,即可得到函数在区间上的最大值和最小值。【详解】(1)函数的定义域为,由得令得,当和时,;当时,因此,的单调递增区间为和,单调递减区间(2)由(1),列表得单调递增极大值单调递减极小值单调递增因为 ,所以在区间上的最大值为6,,最小值为【点睛】本题考查利用导数研究函数的单调区间和最值问题,考查学生的基本运算能力,属于基础题。19.某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为现有10件产品,其中7件是一等品,3件是二等品.(1)随机选取1件产品,求能够通过检测的概率;(2)随机选取3件产品,(i)记一等品的件数为,求的分布列;(ii)求这三件产品都不能通过检测的概率【答案】(1)(2)()见解析()见解析【解析】【分析】(1)设随机选取一件产品,能通过检测的事件为,,事件等于事件“选取一等品都通过或者选取二等品通过检测”,由此能求出随机选取1件产品,能够通过检测的概率;(2)(i)随机变量的取值有:0,1,2,3,分别求出其概率即可。(ii)设随机选取3件产品都不能通过检测的事件为,事件等于事件“随机选取3件产品都是二等品且都不能通过检测”,由此能求这三件产品都不能通过检测的概率。【详解】(1)设随机选取一件产品,能通过检测的事件为,事件等于事件“选取一等品都通过或者选取二等品通过检测”,则.(2)(i)的可能取值为.,.故的分布列为0123(ii)设随机选取3件产品都不能通过检测的事件为,事件等于事件“随机选取3件产品都是二等品且都不能通过检测”,所以【点睛】本题考查等可能事件的概率,考查离散型随机变量的分布列,考查独立重复试验的概率公式,本题是一个概率的综合题目。20.在中,三个内角的对边分别为(1)若是的等差中项,是的等比中项,求证:为等边三角形;(2)若为锐角三角形,求证:【答案】(1)见解析(2)见解析【解析】【分析】(1)由是的等差中项可得,由是的等比中项,结合正弦定理与余弦定理即可得到,由此证明为等边三角形;(2)解法1:利用分析法,结合锐角三角形性质即可证明;解法2:由为锐角三角形以及三角形的内角和为,可得,利用公式展开,进行化简即可得到。【详解】(1)由成等差数列,有 因为为的内角,所以 由得 由是的等比中项和正弦定理得,是的等比中项, 所以 由余弦定理及,可得再由,得即,因此从而 由,得 所以为等边三角形(2)解法1: 要证只需证因为、都为锐角,所以,故只需证:只需证:即证:因为,所以要证:即证:即证:因为为锐角,显然故原命题得证,即解法2:因为为锐角,所以因为所以, 即展开得: 所以 因为、都为锐角,所以,所以即【点睛】本题考查正余弦定理、等差等比的性质,锐角三角形的性质,熟练掌握定理是解决本题的关键。21.近年来,人们对食品安全越来越重视,有机蔬菜的需求也越来越大,国家也制定出台了一系列支持有机肥产业发展的优惠政策,鼓励和引导农民增施有机肥,“藏粮于地,藏粮于技”根据某种植基地对某种有机蔬菜产量与有机肥用量的统计,每个有机蔬菜大棚产量的增加量(百斤)与使用有机肥料(千克)之间对应数据如下表:使用有机肥料(千克)345678910产量增加量 (百斤)2.12.93.54.24.85.66.26.7(1)根据表中的数据,试建立关于的线性回归方程(精确到);(2) 若种植基地每天早上7点将采摘的某有机蔬菜以每千克10元的价格销售到某超市,超市以每千克15元的价格卖给顾客已知该超市每天8点开始营业,22点结束营业,超市规定:如果当天16点前该有机蔬菜没卖完,则以每千克5元的促销价格卖给顾客(根据经验,当天都能全部卖完)该超市统计了100天该有机蔬菜在每天的16点前的销售量(单位:千克),如表:每天16点前的销售量(单位:千克)100110120130140150160频数10201616141410若以100天记录的频率作为每天16点前销售量发生的概率,以该超市当天销售该有机蔬菜利润的期望值为决策依据,说明该超市选择购进该有机蔬菜110千克还是120千克,能使获得的利润更大?附:回归直线方程中的斜率和截距的最小二乘估计公式分别为: ,参考数据:,【答案】(1)(2)选择购进该有机蔬菜120千克,能使得获得的利润更大【解析】【分析】(1)求出,结合题目所给数据,代入回归直线方程中的斜率和截距的最小二乘估计公式中,即可求出线性回归方程;(2)分别计算出购进该有机蔬菜110千克利润的数学期望和120千克利润的数学期望,进行比较即可得到答案。【详解】(1),因为,所以,所以关于的线性回归方程为.(2)若该超市一天购进110千克这种有机蔬菜, 若当天的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论