




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章 行列式一、单项选择题1下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)243512如果阶排列的逆序数是, 则排列的逆序数是( ). (A) (B) (C) (D)3. 阶行列式的展开式中含的项共有( )项.(A) 0 (B) (C) (D) 4( ).(A) 0 (B) (C) (D) 25. ( ).(A) 0 (B) (C) (D) 26在函数中项的系数是( ). (A) 0 (B) (C) (D) 27. 若,则 ( ). (A) 4 (B) (C) 2 (D) 8若,则 ( ). (A) (B) (C) (D)9 已知4阶行列式中第1行元依次是, 第3行元的余子式依次为, 则( ).(A) 0 (B) (C) (D) 210. 若,则中第一行元的代数余子式的和为( ).(A) (B) (C) (D)11. 若,则中第四行元的余子式的和为( ).(A) (B) (C) (D)12. 等于下列选项中哪个值时,齐次线性方程组有非零解. ( ) (A) (B) (C) (D)二、填空题1. 阶排列的逆序数是.2在六阶行列式中项所带的符号是.3四阶行列式中包含且带正号的项是.4若一个阶行列式中至少有个元素等于, 则这个行列式的值等于.5. 行列式.6行列式.7行列式.8如果,则.9已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.10行列式.11阶行列式.12已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13设行列式,为D中第四行元的代数余子式,则.14已知, D中第四列元的代数余子式的和为.15设行列式,为的代数余子式,则,.16已知行列式,D中第一行元的代数余子式的和为.17齐次线性方程组仅有零解的充要条件是.18若齐次线性方程组有非零解,则=.三、计算题1. ; 2;3解方程; 4; 5. (); 6. 7. ; 8; 9. ; 10. 11.四、证明题1设,证明:.2.3.4.5设两两不等,证明的充要条件是.参考答案一单项选择题A D A C C D A B C D B B二填空题1.; 2.; 3.; 4.; 5.; 6.; 7.; 8.; 9.; 10.; 11.; 12.; 13.; 14.; 15.; 16.; 17.; 18.三计算题1; 2. ;3. ; 4. 5. ; 6. ;7. ; 8. ;9. ; 10. ;11. .四. 证明题 (略)第二章 矩阵一、单项选择题1. A、B为n阶方阵,则下列各式中成立的是( )。(a)(b) (c) (d) 2.设方阵A、B、C满足AB=AC,当A满足( )时,B=C。(a) AB =BA (b) (c) 方程组AX=0有非零解 (d) B、C可逆 3.若为n阶方阵,为非零常数,则( )。(a) (b) (c) (d) 4.设为n阶方阵,且,则( )。 (a) 中两行(列)对应元素成比例 (b) 中任意一行为其它行的线性组合(c) 中至少有一行元素全为零 (d) 中必有一行为其它行的线性组合 5.设,为n阶可逆矩阵,下面各式恒正确的是( )。(a) (b) (c) (d) 6.设为n阶方阵,为的伴随矩阵,则( )。(a) (a) (b) (c) (d) 7. 设为3阶方阵,行列式,为的伴随矩阵,则行列式( )。(a) (b) (c) (d) 8. 设,为n阶方矩阵,则下列各式成立的是( )。(a) (b) (c) (d) 9. 设,均为n阶方矩阵,则必有( )。(a) (b) (c) (d) 10.设为阶可逆矩阵,则下面各式恒正确的是( )。(a) (b) (c) (d) 11.如果,则( )。 (a) (b) (c) (d) 12.已知,则( )。 (a) (b) (c) (d) 13.设为同阶方阵,为单位矩阵,若,则( )。(a) (b) (c) (d) 14.设为阶方阵,且,则( )。(a)经列初等变换可变为单位阵(b)由,可得(c)当经有限次初等变换变为时,有(d)以上(a)、(b)、(c)都不对 15.设为阶矩阵,秩,则( )。(a)中阶子式不全为零 (b)中阶数小于的子式全为零(c)经行初等变换可化为 (d)为满秩矩阵 16.设为矩阵,为阶可逆矩阵,则( )。(a)秩() 秩() (b) 秩()= 秩()(c) 秩() 秩() (d) 秩()与秩()的关系依而定 17.,为n阶非零矩阵,且,则秩()和秩()( )。(a)有一个等于零 (b)都为n (c)都小于n (d)一个小于n,一个等于n 18.n阶方阵可逆的充分必要条件是( )。(a) (b) 的列秩为n(c) 的每一个行向量都是非零向量 (d)伴随矩阵存在 19.n阶矩阵可逆的充要条件是( )。(a) 的每个行向量都是非零向量(b) 中任意两个行向量都不成比例(c) 的行向量中有一个向量可由其它向量线性表示(d)对任何n维非零向量,均有 二、填空题1.设为n阶方阵,为n阶单位阵,且,则行列式_ 2.行列式_ 3.设2,则行列式的值为_ 4.设,且已知,则行列式_ 5.设为5阶方阵,是其伴随矩阵,且,则_ 6.设4阶方阵的秩为2,则其伴随矩阵的秩为_ 7.非零矩阵的秩为_ 8.设为100阶矩阵,且对任何100维非零列向量,均有,则的秩为_9.若为15阶矩阵,则的第4行第8列的元素是_ 10.若方阵与相似,则_ 11._ 12._ 三、计算题1.解下列矩阵方程(X为未知矩阵).1) ; 2) ;3) ,其中 ; ;4) ,其中;5) ,其中;2.设为阶对称阵,且,求. 3.已知,求. 4.设,求. 5.设,求一秩为2的方阵,使. 6.设,求非奇异矩阵,使. 7.求非奇异矩阵,使为对角阵. 1) 2) 8.已知三阶方阵的三个特征根为1,1,2,其相应的特征向量依次为,求矩阵. 9.设,求. 四、证明题1. 设、均为阶非奇异阵,求证可逆.2. 设(为整数), 求证可逆.3.设为实数,且如果,如果方阵满足,求证是非奇异阵.4. 设阶方阵与中有一个是非奇异的,求证矩阵相似于.5. 证明可逆的对称矩阵的逆也是对称矩阵.6. 证明两个矩阵和的秩小于这两个矩阵秩的和.7.证明两个矩阵乘积的秩不大于这两个矩阵的秩中较小者.8. 证明可逆矩阵的伴随矩阵也可逆,且伴随矩阵的逆等于该矩阵的逆矩阵的伴随矩阵.9.证明不可逆矩阵的伴随矩阵的逆不大于1.10.证明每一个方阵均可表示为一个对称矩阵和一个反对称矩阵的和。第二章参考答案一:1. a;2. b;3.c;4.d;5.b;6.d;7.a;8.d;9.c;10.d;11.b;12.c;13.b;14.a;15.a;16.b;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教师招聘之《幼儿教师招聘》能力检测试卷附答案详解【巩固】
- 2025呼伦贝尔莫力达瓦达斡尔族自治旗尼尔基第一中学校园引才笔试备考有完整答案详解
- 未包括的互联网服务创新创业项目商业计划书
- 用户生成图文故事创作平台创新创业项目商业计划书
- 低温耐受性马铃薯品种研究创新创业项目商业计划书
- 教师招聘之《幼儿教师招聘》考试模拟试卷附参考答案详解【夺分金卷】
- 教师招聘之《幼儿教师招聘》考前冲刺测试卷附有答案详解及参考答案详解【达标题】
- 智能制造数字化全产业链解决方案
- 教师招聘之《幼儿教师招聘》强化训练模考卷及答案详解【名校卷】
- 2025年四川宜宾市珙县事业单位选调13人笔试备考题库附答案详解
- 新型给药系统行业分析报告
- 特种设备日管控、周排查、月调度模板
- 山东钢铁集团矿业有限公司彭集铁矿采选工程项目环境影响报告
- 员工信息安全培训手册
- 华为项目管理10大模板Excel版可直接套用-非常实用
- 空管三校联考复习题(DOC)
- GB/T 27021.3-2021合格评定管理体系审核认证机构要求第3部分:质量管理体系审核与认证能力要求
- 3000储罐预制安装施工方案
- 食品工程原理(课堂)课件
- 五年级上册数学课件-《练习一》北师大版 (共10张PPT)
- 移动通信5G关键技术分析课件
评论
0/150
提交评论