(第33课)导数在实际生活中的应用_第1页
(第33课)导数在实际生活中的应用_第2页
(第33课)导数在实际生活中的应用_第3页
(第33课)导数在实际生活中的应用_第4页
(第33课)导数在实际生活中的应用_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3.4导数在实际生活中的应用,宿迁青华中学徐守高,1、实际问题中的应用.,在日常生活、生产和科研中,常常会遇到求函数的最大(小)值的问题.建立目标函数,然后利用导数的方法求最值是求解这类问题常见的解题思路.,在建立目标函数时,一定要注意确定函数的定义域.,在实际问题中,有时会遇到函数在区间内只有一个点使的情形,如果函数在这个点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值.这里所说的也适用于开区间或无穷区间.,满足上述情况的函数我们称之为“单峰函数”.,3、求最大(最小)值应用题的一般方法,(1)分析实际问题中各量之间的关系,把实际问题化为数学问题,建立函数关系式,这是关键一步。,(2)确定函数定义域,并求出极值点。,(3)比较各极值与定义域端点函数的大小,结合实际,确定最值或最值点。,2、实际应用问题的表现形式,常常不是以纯数学模式反映出来。,首先,通过审题,认识问题的背景,抽象出问题的实质。其次,建立相应的数学模型,将应用问题转化为数学问题,再解。,4.问题类型,1.几何方面的应用,2.物理方面的应用.,3.经济学方面的应用,(面积和体积等的最值),(利润方面最值),(功和功率等最值),解:设箱底边长为xcm,,箱子容积为V=x2h,例1在边长为60cm的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少?,则箱高,V=60 x3x/2,令V=0,得x=40,x=0,(舍去),得V(40)=16000,答:当箱底边长为x=40时,箱子容积最大,最大值为16000cm3,在实际问题中,如果函数f(x)在某区间内只有一个x0使f(x0)=0,而且从实际问题本身又可以知道函数在这点有极大(小)值,那么不与端点比较,f(x0)就是所求的最大值或最小值.(所说区间的也适用于开区间或无穷区间),11年应用题是全卷的焦点请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm(1)若广告商要求包装盒侧面积S(cm)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值。课本例题的改编导数解决放到17题位置相对简单。,练习2:某种圆柱形的饮料罐的容积一定时,如何确定它的高与底半径,使得所用材料最省?,R,h,解设圆柱的高为h,底面半径为R.,则表面积为S(R)=2Rh+2R2.,又V=R2h(定值),即h=2R.,可以判断S(R)只有一个极值点,且是最小值点.,答罐高与底的直径相等时,所用材料最省.,200817如图,某地有三家工厂,分别位于矩形ABCD的两个顶点A,B及CD的中点P处AB20km,BC10km为了处理这三家工厂的污水,现要在该矩形区域上(含边界)且与A,B等距的一点O处,建造一个污水处理厂,并铺设三条排污管道AO,BO,PO记铺设管道的总长度为ykm(1)按下列要求建立函数关系式:(i)设(rad),将表示成的函数;(ii)设(km),将表示成的函数;(2)请你选用(1)中的一个函数关系确定污水处理厂的位置,使铺设的污水管道的总长度最短。【解析】本小题主要考查函数最值的应用,例3.已知某商品生产成本C与产量q的函数关系式为C=100+4q,价格p与产量q的函数关系式为求产量q为何值时,利润L最大。,分析:利润L等于收入R减去成本C,而收入R等于产量乘价格.由此可得出利润L与产量q的函数关系式,再用导数求最大利润.,求得唯一的极值点,因为L只有一个极值点,所以它是最大值.,答:产量为84时,利润L最大.,解:设B(x,0)(0x2),则A(x,4x-x2).,从而|AB|=4x-x2,|BC|=2(2-x).故矩形ABCD的面积为:S(x)=|AB|BC|=2x3-12x2+16x(00,故当登陆点选在距离BKM处时所用时间最少。,练习4:已知x,y为正实数,且x2-2x+4y2=0,求xy的最大值.,解:由x2-2x+4y2=0得:(x-1)2+4y2=1.,设,由x,y为正实数得:,设,令,得又,又f(0)=f()=0,故当时,练习5:证明不

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论