FLuent-换热器的相变模拟计算PPT课件_第1页
FLuent-换热器的相变模拟计算PPT课件_第2页
FLuent-换热器的相变模拟计算PPT课件_第3页
FLuent-换热器的相变模拟计算PPT课件_第4页
FLuent-换热器的相变模拟计算PPT课件_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

-,1,NewInitiativesatFluentInc.,PhaseChangeinHeatExchangers,BrianBell,FluentInc.,UGM2001,-,2,Motivation,DemonstratetheuseofFluenttomodelphasechangeinheatexchangersProcessesofinterestCondensationEvaporationBoilingIllustratehowtomodelonesuchprocessthroughuseofadetailedexampleShell-and-tubecondenserProvidemotivationforuserstobegindevelopingmodelsoftheirowndevices,-,3,Outline,ProblemDescriptionShell-and-tubecondenserPurevaporcondensationNon-condensablegasesModelingApproachPorousmediumHeatandmasstransfermodelingModelImplementationUser-DefinedFunctionsandUser-DefinedMemoryResultsSteamcondenserwithnon-condensablegasesCommercialchillercondenser,-,4,DescriptionofProblem,Shell-and-tubecondenser,-,5,GoalsofCFDModeling,CondenserperformancecharacterizedbyheatandmasstransferrateCFDallowsevaluationoffactorsaffectingheatandmasstransferincondenserTubebundleconfigurationTubearrangementNumberofpassesLocationofinletportsBafflesPressuredropVelocityfieldNon-condensablesLocationandconfigurationofpurgesystemResultsallowidentificationofpotentialdesignimprovements,-,6,FilmCondensationProcess,DrivingpotentialforcondensationisthetemperaturedifferencebetweenvaporandcoolingwaterDrivingpotentialvariationcausedbyPressuredropRiseofcoolingwatertemperatureNon-condensables,-,7,CFDModelingTheory,PorousmediumapproachTubebundletreatedasporousmediumEnablescomputationallyefficientmodelingofentirecondenserComparisonwithdetailedmodelingapproachIn2-D,O(100)-O(1000)controlvolumespertubeversusmorethanonetubepercontrolvolumeHeatandmasstransfermodelsCondensationratecalculationCondensationratedeterminedfromlocalflowfieldandcoolingwatertemperatureLiquidfilmflowratetrackedinbundlefromtoptobottomCoolingwatertemperaturetrackedfrominlettooutlet,-,8,PorousMediumApproach,RepresentationoftubebundleasporousmediumPorosityisonlyrequiredparameterPorositydefinedasratiooffluidvolumetototalvolume,Example:staggeredtubebundlewithequilateraltriangularlayout,Porosity,b,expressedas:,-,9,TransportEquations,Generictransportequationforporousmediumapproach,DistributedresistancetakesformofsourcetermsthatmodeldetailsoftheflowthatarenotresolvedbythegridPorosityinconvectionanddiffusiontermsnotmodeledinFluentDistributedresistancetermsmostsignificantintubebundleregion,-,10,EvaluationofModelingApproach,AdvantagesComputationallyefficientDoesanalternate,tractableapproachexist?ApproachdemonstratedtogivemeaningfuldatabyseveralauthorsDisadvantagesLossofsomeflowdetailsduetoaveragingCanbeovercomebydetailedmodelingofsmallregionsofcondenser,-,11,HeatTransferProcess,Filmcondensationonhorizontaltube,CoolingWater,TubeWall,CondensateFilm,Liquid-vaporInterface,RefrigerantVapor,Latentheatreleasedatliquid-vaporinterfacetransferredtocoolingwater,-,12,HeatTransferModel,HeattransferismodeledbycouplingofthermalresistancenetworkwithCFDcode,Tcw,Tt,i,Tt,o,Ti,Rcw,Rtube,Rcond,CoolingWater,CFDcodeprovidesinterfacetemperature,TiCoolingwaterandtubethermalresistancesaregenerallywell-knownFilmheattransfercoefficientisrequiredforRcond,-,13,FilmHeatTransferCoefficient,CriticalcomponentofheattransfermodelObtainfromexperiment,OrobtainfromliteratureSteamcondensationonsmoothtubes,FigurecourtesyofKansasStateUniversity,ProfessorSteveEckles,andDuaneL.Randall,-,14,ModelingAssumptions,EffectofliquidonflowfieldisneglectedApproachcanalsobeimplementedinEulerian-EulerianmultiphaseframeworkSatisfactorymodelforliquidphaserepresentationnotcurrentlyavailablePublishedresultsofthistypeofmodeldonotappeartoshowsignificantadvantageVaporisassumedtobesaturatedNosuperheatingVaportemperaturedeterminedfrompressurefieldcalculatedbyCFDcode,-,15,ImplementationofModelwithUDFs,UDFsarerequiredfor:SourcetermsrequiredbyporousmediumapproachCondensationratePressuredropinporousregionRepresentationoftubebundlePorosityCondensatefilmflowrateaccountingCoolingwatertemperaturecalculationwithmultipletubepasses,-,16,CoolingwatertemperaturecalculationforeachsegmentEveryiteration,condensationrateissummedovereachsegmentInletcoolingwatertemperature=outlettemperaturefromprevioussegmentSegmentoutletcoolingwatertemperaturecalculatedbyenergybalance.Log-meantemperatureforeachsegmentcalculatedbasedonvaportemperatureandcoolingwaterinletandoutlettemperatures,TubeBundleRepresentation,BundleconsistsofNpassesandMsegmentsEachsegmentdefinedasuniquecellzone,Example:2PassbundleN=2,M=4,-,17,TubeBundleGridStructure,Structured,cartesiangridusedintubebundleEachcontrolvolumehasuniquei,j,kindex,GridstructurecreatedwithUDFsGridgenerator,solverdoNOTutilizestructureUsedtotrackcondensatefilmflowrate,-,18,SourceTerms,AlgorithmforsourcetermincontinuityequationObtainpressure,velocityandspeciesmassfraction(ifnecessary)fromcurrentsolutionvaluesObtainfilmReynoldsnumberandcoolingwatertemperaturefromUser-DefinedMemoryCalculateheatfluxbasedoncurrentvalueofsolutionvariablesTranslateheatfluxintovolumetricmasssourcetermUnder-relaxsourcetermSi+1=Si+a(SoSi)Requiredforsolutionstability.Alphatypically0.010.10Valueofsourcetermfrompreviousiteration,So,storedinUser-DefinedMemorySourceterminmomentumequationsCalculatedusingempiricalcorrelationswithtubebundleporosityandcurrentvelocity,-,19,Define_On_DemandFunctions,Define_On_DemandfunctionsexecutedonceperiterationUpdatecondensatefilmmassflowrateUpdatecoolingwatertemperatureAssumeuniformtemperatureforeachbundlesegmentNewvaluesstoredinUser-definedmemoryAutomaticDefine_On_DemandexecutionpossibleExample:,-,20,SolutionAlgorithm,InitializeSolution:Assignporosity,tubebundleorientation,Updatecoolingwatertemperatureandliquidcondensatemassflowrate,Calculatesourceterms,Solveflowequations,Yes,No,SolutionConverged?,Stop,-,21,Examples,Steamcondensationwithnon-condensablegases,McAllisterCondenserfrom:Bushetal.,1990,Proc.Int.Symp.OnCondensersandCondensation,-,22,McAllisterCondenserGeometry,BoundaryconditionsandmodelinputsShellDimensions1.02mX1.22mX0.78m,CoolingwaterflowdirectionInlettemperature:17.8CInletvelocity:1.19m/s,TubeBundleSinglepass,4segmentsOuterDiameter:.0254mInnerDiameter:.0242mPitch:.0349mPorosity:0.52,PurgeMassflowrate:.011kg/s,InletPressure:27670PaAirmassfraction:0.00122,-,23,CondenserGrid,15,000ControlVolumesSimplegeometryallowsstructuredgridthroughoutdomain,Gridprofileinx-zplane,-,24,Results,CondensationRate,InletmassflowrateCFD:2.124kg/sExp.:2.032kg/sError:4.5%,Coolingwatertemperaturecontours,Volumetriccondensationratecontours,-,25,McAllisterCondenserFlowField,VelocityMagnitudeMax:34.4m/sMin:0.02m/s,PressureMax:27,663PaMin:27,530Pa,AirMassFractionMax:.534Min:.00122,CondensationRate*Max:6.1kg/smMin:0.0kg/sm,*Minimumcondensationrateintubebundleis0.18kg/sm,-,26,EffectofAironCondensationRate,Volumetriccondensationratecontou

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论