




免费预览已结束,剩余24页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
本讲内容:,一、质点的角动量,二、角动量守恒,第四讲角动量守恒定律,开普勒三大定律,Keplerlaws,开普勒第二定律,行星对太阳的径矢在相等的时间内扫过相等的面积.,Keplerlaws,除了动量,机械能守恒量以外一定还有另外一个守恒量存在!,实例:,力矩,力对o点的力矩表达式:,方向由右手螺旋法则确定。,说明:1.力矩是改变质点系转动状态的原因;力是改变质点系平动状态的原因。2.同一力对空间不同点的力矩是不同的;,一、质点的角动量,中学的表达式:对O点力矩M,正是前面定义的力矩的大小。,力矩的方向由右手螺旋法则来确定才有矢量的确切含义。,点积的微商,点积,叉积的微商,叉积,数学补充知识:,质点的角动量定理:,仿照平动:,定义角动量,质点的角动量定理,1.质点的圆周运动,动量:,(对圆心的)角动量:,大小:,力是物体平动运动状态(用动量来描述)发生改变的原因。力矩是引起物体转动状态(用角动量来描述)改变的原因。,质点的角动量,方向:满足右手关系,向上。,2.行星在绕太阳公转时的椭圆轨道运动,大小:,方向:满足右手关系,向上。,3.质点直线运动对某定点的角动量:,大小:,方向:,思考:如何使L=0?,对定点(太阳)的角动量:,等于零吗?,说明:,1.角动量是矢量(kgm2s-1),3.角动量的方向:,与同方向,定义:,对O点的角动量:,2.角动量对不同点是不同的。,质点的角动量总结:,试求:该质点对原点的角动量矢量和力矩.,解:,例:一质量为m的质点沿一条二维曲线运动,其中a,b,为常数,(恒矢量),或由,直接计算力矩,当=恒矢量,二、角动量守恒定律,质点角动量守恒,开普勒第二定律,例:,行星对太阳的径矢在相等的时间内扫过相等的面积.,Keplerlaws,当质点所受对参考点O的合力矩为零时,质点对该参考点O的角动量为一恒矢量。,开普勒第二定律,讨论:行星受力方向与矢径在一条直线(中心力),永远与矢径是反平行的。故对力心质点所受的力矩为零。则对力心角动量守恒!,行星的动量时刻在变,但其角动量可维持不变.,在研究质点受有心力作用的运动时,角动量将代替动量起着重要的作用.,质点在有心力场中,它对力心的角动量守恒。,注意,m,返回,-/2,行星对太阳的径矢扫过的面积:,判断下列情况角动量是否守恒:,圆锥摆运动中,做水平匀速圆周运动的小球m。,(1)对C点的角动量是否守恒?,(2)对O点的角动量是否守恒?,(3)对竖直轴CC的角动量是否守恒?,为了巩固质点角动量守恒的概念,请同学思考!,质点系的角动量定理和角动量守恒定律,1.一对作用力、反作用力对定点(定轴)的合力矩等于零。,证明:,质点系角动量,一个质点系所受的合外力矩等于该质点系总角动量对时间的变化率质点系的角动量定理。,一对作用力、反作用力对定点(定轴)的合力矩等于零。,说明:,3.角动量守恒定律是独立于牛顿定律的自然界中更普适的定律之一.,4.角动量守恒定律只适用于惯性系。,2.守恒指过程中任意时刻。,1.角动量守恒条件:合外力矩为零.,合外力为零,合外力矩不一定为零,反之亦然.,一个质点系所受的合外力矩等于该质点系总角动量对时间的变化率。,质点系的角动量定理,即:虽然,但对某轴外力矩为零,则总角动量不守恒,但对这轴的角动量是守恒的.,3.由分量式:,角动量守恒的几种可能情况:,1.孤立系.,2.有心力场,对力心角动量守恒.,常量,1.孤立系.,为什么星系是扁状,盘型结构?,1.孤立系.,18世纪哲学家提出星云说,认为太阳系是由气云组成的。气云原来很大,由自身引力而收缩,最后聚集成一个个行星、卫星及太阳本身。但是万有引力为什么不能把所有的天体吸引在一起而是形成一个扁平的盘状?康德认为除了引力还有斥力,把向心加速的天体散射到个方向。19世纪数学家拉普拉斯完善了康德的星云说,指出旋转盘状结构的成因是角动量守恒。我们可以把天体系统看成是不受外力的孤立系统。原始气云弥漫在很大的范围内具有一定的初始角动量J,当r变小的时,在垂直J的横方向速度要增大,而平行J方向没有这个问题,所以天体就形成了朝同一个方向旋转的盘状结构。,数学推导,引力使星团压缩,角动量守恒,惯性离心力,离心力与引力达到平衡,r就一定了.,而与角动量平行方向无限制,最终压缩成铁饼状.,返回,例:质量为m的小球系在绳的一端,另一端通过圆孔向下,水平面光滑,开始小球作圆周运动(r1,v1)然后向下拉绳,使小球的运动轨迹为r2的圆周求:v2=?,解:作用在小球的力始终通过O点(有心力)由质点角动量守恒:,2.有心力场,对力心角动量守恒.,3.虽然,但对某轴外力矩为零,则总角动量不守恒,但对这轴的角动量是守恒的.,在刚体中经常用到,例题半径为r的轻滑轮的中心轴O水平地固定在高处,其上穿过一条轻绳,质量相同的两人A、B以不同的爬绳速率vA、vB从同一高度同时向上爬,试问谁先到达O处?,对滑轮的轴的外力矩为零,则对该轴系统总角动量是守恒的.,可见,不论A、B对绳的速率vA、vB如何,二人对O的速率相同,解:对象:滑轮+绳+A+B,则,受外力:mAg=mBg=mg,N,对z轴的合力为0.,对z轴,系统角动量守恒,A,B对O点速率vA,vB,初始时刻系统角动量为零,则:,z轴正向:O点向外.,故将同时到达O点.,一对作用力、反作用力对定点(定轴)的合力矩等于零。,小结:,质点角动量,质点角动量定理:,即:虽然,但对某轴外力矩为零,则总角动量不守恒,但对这轴的角动量是守恒的.,3由分量式:,角动量守恒的几种可能情况:,1孤立系.,2有心力场,对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 俩个人合伙入股合同范本
- 当前临时工劳动合同范本
- 卖收割机合同协议书样本
- 南阳门面房租赁合同范本
- 三方入股分红合同协议书
- 软件购置及服务合同范本
- 餐饮收银员聘用合同范本
- 钢结构喷漆维修合同范本
- 与医院签用工合同范本
- 通讯经营部购销合同范本
- 部编版五年级上册语文单元教学计划
- 产品经理绩效管理制度
- 2025年烟台市中考历史试卷真题(含答案)
- 2025四川产业振兴基金投资集团有限公司招聘12人笔试参考题库附带答案详解析集合
- 风湿免疫病患者结核病诊治及预防实践指南(2025版)解读课件
- 膜结构车棚安装合同协议
- 山东省2016年安装定额解释
- 2025-2030中国相变热界面材料行业市场现状供需分析及投资评估规划分析研究报告
- 《中华人民共和国公务员法概述》课件
- 华为公司财务报表分析案例
- 安徽省合肥市2025届高三下学期第二次教学质量检测 英语试题(含解析无听力音频有听力原文)
评论
0/150
提交评论