




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
5.角度平分线,垂直平分线知识测试点:理解角平分线、垂直平分线的特性和定理,并解决一些实际问题。正典例句:【范例】如图所示,ABC中的AB=AC,b=300,AB的垂直平分线EF是从点e到AB,从点f到BC,cf=2bf。分析1:要证明CF=2BF,因为BF与CF没有直接连接,所以在联想问题中,EF是竖直的,如果根据属性可以连接AF,则BF=af。问题转换为cf=2af,b=c=300。这就像是想证明。根据包含角度caf=900,300的直角三角形的特性,可以得到cf=2af=2bf。分析2: cf=2bf,Lenovo-b=300,EF在g中相交a/EF FC以300角得到rt 15abg,EF是rt 15abg的中线,因此BG=2bf分析3:等腰三角形从d到dBC联想到“三线1”的性质,通过考虑b=300设定ef=1并用毕达哥拉斯定理计算,证明了BD=CD。以上三种分析的证明。导航和创新:问题阅读以下资料并回答提出的问题:三角内角平分线特性定理:三角形内角平分线使两条线段与相应角的两侧成正比。在图ABC中,AD是角度平分线。寻求证据:分析:要证明,通常情况下,如果具有BD,DC和AB,AC或BD,AB和DC,AC的三角形相似,那么b,d,c在同一条直线上,ABD和ADC不相似,因此必须考虑用其他方法改变比例。在费率表达式中,AC是BD、DC、AB的第四个比例项目,因此,c可以考虑ce/ad交叉BA在e中的扩展,从而获得BD、CD、AB的第四个比例AE,并将其转换为认证AE=AC。证明:c位于ce/ad交叉BA的延长线ece/ad;e=3ae=ACCe/ad(1)上述证明中使用了什么定理(写两个定理就行了);(2)上述分析、证明过程中主要使用的三种数学思想中,有哪些?(?请在后面的括号中选择一个()结合意识形态的数字转换思想分类讨论思想回答:改变想法(3)通过三角内部每个等分线特性定理解决问题:已知AD从ABC中求出BAC的角度等分线,AB=5厘米,AC=4厘米,BC=7厘米,BD的长度。答案:cm解说:这个问题的目的主要在于调查学生的阅读理解能力。追踪训练:垂直线、中心线、角度平分练习一、填空:1,插图,a=520,o是AB,AC的垂直平分线的交点。2,如果图形中AB=AC,3号问题图3,在图ABC中,c=900,b=150,AB中的垂直线DE AC是d点,e是垂直脚,对于BD=8,AC=。4,在图ABC中,AB=AC,DE是AB的垂直平分线,BCE的周长为24,BC=10,则AB=.5,如图所示,EG,FG分别是MEF和NFE的各个评分。交点为g、BP、CP分别为MBC和NCB的各平线。交点为p,f,c为AN,b,e为AM,g=680时p=。选择第三个问题二、选择题:1,图,ABC的角度平分线CD,如果BE与点f相交,a=600,则BFC等于()a、800 B、1000 C、1200 D、14002、图、ABC中、1=2、3=4、d=360时,c的度为()a、820 B、720 C、620 D、5203,图ABC的外角度平分线ce 8/ab,中间线AF分ABC的周长为2: 3,ABC的周长为30厘米,则3条边的长度各为()a、8厘米、8厘米、14厘米B、12厘米、12厘米、6厘米c,8厘米,8厘米,14厘米或12厘米,12厘米,6厘米D,以上回答都是错误的4,图,在RtABC中,c=900,CD在AB边上高,CE是中线,CF是ACB的平线,图中相同锐角是组时通用()a,0组b,2组c,3组d,4组5,如果三角形两侧垂直平分线的交点位于第三条边上,则此三角形为()a,锐角三角形b,直角三角形c,钝角三角形d,不确定三、回答问题:1,图,RtABC的-a的平分线与斜边中点m的垂直线和点d相交。验证:ma=MD在2 ABC中,ABAC、d、e位于BC中,de=EC、d是点f/ba,df=AC验证:AE划分BAC。3,在图ABC中,b=22.50,c=600,AB的垂直平分线查找点d,BD=,ABC在点e处的EC长度。4,插图,在RtABC中,ACB=900,AC=BC,d是BC的中点,CEad,垂直脚e,BFAC AC的延长线来自点f,卡AAC参考答案一、填空:1,380;2,240;3,4;4,14;5,680二、选择题:1.c2.b3.c4.d5.b三、回答问题:1,证明:如果a从n到BC,则b-c=b-ban=90;c=banm是BC的重点am=cmcam=c=banad是a的评分bad=CADDan=madan/DMADM=Dan=madma=MD2,证明:将FE延长到g,eg=ef,链接CG,def=ceg,DE=CE875 def 8 cegdf=CG,dfg=gdf=ACac=CGCAG=g=dfgdfbabag=dfg=CAGae平分BAC3,链接AD,DF是AB的垂直平分线,ad=BD=,b=dab=22.50ade=450,AE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年北美储能技术市场动态与政策导向报告
- 2025年氢能重卡技术创新在新能源设备运输领域的应用分析报告
- 留学中介行业分析报告的背景与目标
- 考研学校体育学资料(3篇)
- ISO 9001(DIS)-2026《质量管理体系-要求》之4:“4组织环境-4.4质量管理体系”专业深度解读和应用指导材料(雷泽佳编写2025A0)
- 湖北省咸宁市华师元一赤壁学校2025-2026学年高二上学期9月月考历史试卷
- 四川三类人员安全b考试题库及答案解析
- 从业姿格证再教育考试题及答案解析
- 甲烷氯化物PCE安全培训试题及答案解析
- 安全题库技巧及答案解析
- 康复养老护理辅具研发
- 2024(苏教版)劳动六年级上册全册教学案
- 国开2025年人文英语4写作形考答案
- 2025秋苏教版(2024)小学科学二年级上册(全册)教学设计(附目录P123)
- 2025年amOLED行业研究报告及未来行业发展趋势预测
- 2025年国家电网公司招聘面试模拟题集与答案解析
- 拍照摄影技巧
- 校园招聘服务协议书范本
- 语音厅运营基础知识培训
- AIGC艺术设计 课件全套 第1-8章 艺术设计的新语境:AI的介入 -AIGC艺术设计的思考与展望
- 广州市房屋租赁合同国土局标准模版
评论
0/150
提交评论