已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,1.1菱形的性质与判定,第一章特殊平行四边形,导入新课,讲授新课,当堂练习,课堂小结,第2课时菱形的判定,一组邻边相等,有一组邻边相等的平行四边形叫做菱形,菱形的性质,菱形,两组对边平行,四条边相等,两组对角分别相等,邻角互补,两条对角线互相垂直平分每一条对角线平分一组对角,边,角,对角线,复习引入,导入新课,问题菱形的定义是什么?性质有哪些?,根据菱形的定义,可得菱形的第一个判定的方法:,AB=AD,,四边形ABCD是平行四边形,,四边形ABCD是菱形.,数学语言,有一组邻边相等的平行四边形叫做菱形.,思考还有其他的判定方法吗?,讲授新课,前面我们用一长一短两根细木条,在它们的中点处固定一个小钉,做成一个可以转动的十字,四周围上一根橡皮筋,做成一个平行四边形.那么转动木条,这个平行四边形什么时候变成菱形?对此你有什么猜想?,猜想:对角线互相垂直的平行四边形是菱形.,你能证明这一猜想吗?,已知:如图,四边形ABCD是平行四边形,对角线AC与BD相交于点O,ACBD.求证:ABCD是菱形.,证明:四边形ABCD是平行四边形.OA=OC.又ACBD,BD是线段AC的垂直平分线.BA=BC.四边形ABCD是菱形(菱形的定义).,证一证,对角线互相垂直的平行四边形是菱形,几何语言描述:在ABCD中,ACBD,ABCD是菱形.,菱形的判定定理:,归纳总结,又四边形ABCD是平行四边形,,OA=4,OB=3,AB=5,,证明:,即ACBD,,AB2=OA2+OB2,,AOB是直角三角形,,典例精析,四边形ABCD是菱形.,例2如图,ABCD的对角线AC的垂直平分线与边AD、BC分别交于点E、F,求证:四边形AFCE是菱形,A,B,C,D,E,F,O,1,2,证明:四边形ABCD是平行四边形,AEFC,1=2.EF垂直平分AC,AO=OC.又AOE=COF,AOECOF,EO=FO.四边形AFCE是平行四边形.又EFAC四边形AFCE是菱形.,练一练,在四边形ABCD中,对角线AC,BD互相平分,若添加一个条件使得四边形ABCD是菱形,则这个条件可以是()AABC=90BACBDCAB=CDDABCD,B,小刚:分别以A、C为圆心,以大于AC的长为半径作弧,两条弧分别相交于点B,D,依次连接A、B、C、D四点.,已知线段AC,你能用尺规作图的方法作一个菱形ABCD,使AC为菱形的一条对角线吗?,C,A,B,D,想一想:根据小刚的作法你有什么猜想?你能验证小刚的作法对吗?,猜想:四条边相等的四边形是菱形.,证明:AB=BC=CD=AD;AB=CD,BC=AD.四边形ABCD是平行四边形.又AB=BC,四边形ABCD是菱形.,已知:如图,四边形ABCD中,AB=BC=CD=AD.求证:四边形ABCD是菱形.,证一证,四条边都相等的四边形是菱形,AB=BC=CD=AD,几何语言描述:在四边形ABCD中,AB=BC=CD=AD,,四边形ABCD是菱形.,菱形的判定定理:,归纳总结,下列命题中正确的是()A.一组邻边相等的四边形是菱形B.三条边相等的四边形是菱形C.四条边相等的四边形是菱形D.四个角相等的四边形是菱形,C,练一练,证明:1=2,又AE=AC,AD=AD,ACDAED(SAS).同理ACFAEF(SAS).CD=ED,CF=EF.又EF=ED,CD=ED=CF=EF,四边形ABCD是菱形.,2,例3如图,在ABC中,AD是角平分线,点E、F分别在AB、AD上,且AE=AC,EF=ED.求证:四边形CDEF是菱形.,A,C,B,E,D,F,1,典例精析,课堂
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 揭阳中职学校教学管理策略与实践
- 应急救援知识与面试常见问题
- 2025年社区管理面试题及答案
- 影视导演面试要点解析与实例问答
- 2025陕西交控集团社会招聘笔试历年参考题库附带答案详解
- 2025贵州毕节金沙县国有资本投资运营集团有限公司招聘工作人员复试笔试历年参考题库附带答案详解
- 安保巡逻员岗位监控系统操作手册
- 客户体验设计师培训计划
- 2025江西吉安峡江县工业园区建设投资有限公司面向社会招聘笔试拟入闱人员笔试历年参考题库附带答案详解
- 2025新疆生产建设兵团建设工程(集团)有限责任公司招竞聘14人(第二批次)笔试历年参考题库附带答案详解
- 第24课《诗词曲五首-南乡子 登京口北固亭有怀》课件共34张
- 《化妆品稳定性试验规范》
- 辽宁省2023年高中学业水平合格性考试语文试卷真题(答案详解)
- 交联聚乙烯(EVA)浮筑楼板隔声保温系统应用技术标准
- GB/T 42721-2023电子特气一氧化氮
- 人教版九年级物理《焦耳定律》课件
- 南瑞集团考试真题
- 智慧芽-医药行业:血栓领域抗血小板药物研究进展报告
- 残角子宫妊娠
- LY/T 2435-2015皂荚育苗技术规程
- 第十二章-艺术设计管理(修订版)-课件
评论
0/150
提交评论