



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二章 数列单元复习【知识点】(一)等差、等比数列的性质1.等差数列an的性质(1)am=ak+(mk)d,d=.(2)若数列an是公差为d的等差数列,则数列an+b(、b为常数)是公差为d的等差数列;若bn也是公差为d的等差数列,则1an+2bn(1、2为常数)也是等差数列且公差为1d+2d.(3)下标成等差数列且公差为m的项ak,ak+m,ak+2m,组成的数列仍为等差数列,公差为md.(4)若m、n、l、kN*,且m+n=k+l,则am+an=ak+al,反之不成立.(5)设A=a1+a2+a3+an,B=an+1+an+2+an+3+a2n,C=a2n+1+a2n+2+a2n+3+a3n,则A、B、C成等差数列.(6)若数列an的项数为2n(nN*),则S偶S奇=nd,=,S2n=n(an+an+1)(an、an+1为中间两项);若数列an的项数为2n1(nN*),则S奇S偶=an,=,S2n1=(2n1)an(an为中间项).2.等比数列an的性质(1)am=akqmk.(2)若数列an是等比数列,则数列1an(1为常数)是公比为q的等比数列;若bn也是公比为q2的等比数列,则1an2bn(1、2为常数)也是等比数列,公比为qq2.(3)下标成等差数列且公差为m的项ak,ak+m,ak+2m,组成的数列仍为等比数列,公比为qm.(4)若m、n、l、kN*,且m+n=k+l,则aman=akal,反之不成立.(5)设A=a1+a2+a3+an,B=an+1+an+2+an+3+a2n,C=a2n+1+a2n+2+a2n+3+a3n,则A、B、C成等比数列,设M=a1a2an,N=an+1an+2a2n,P=a2n+1a2n+2a3n,则M、N、P也成等比数列.(二)对于等差、等比数列注意以下设法:如三个数成等差数列,可设为ad,a,a+d;若四个符号相同的数成等差数列,知其和,可设为a3d,ad,a+d,a+3d.三个数成等比数列,可设为,a,aq,若四个符号相同的数成等比数列,知其积,可设为,aq,aq3.(三)用函数的观点理解等差数列、等比数列1.对于等差数列,an=a1+(n1)d=dn+(a1d),当d0时,an是n的一次函数,对应的点(n,an)是位于直线上的若干个点.当d0时,函数是增函数,对应的数列是递增数列;同理,d=0时,函数是常数函数,对应的数列是常数列;d0时,函数是减函数,对应的数列是递减函数.若等差数列的前n项和为Sn,则Sn=pn2+qn(p、qR).当p=0时,an为常数列;当p0时,可用二次函数的方法解决等差数列问题.2.对于等比数列:an=a1qn1.可用指数函数的性质来理解.当a10,q1或a10,0q1时,等比数列是递增数列;当a10,0q1或a10,q1时,等比数列an是递减数列.当q=1时,是一个常数列.当q0时,无法判断数列的单调性,它是一个摆动数列.【典型例题】例1已知数列an,构造一个新数列a1,(a2a1),(a3a2),(anan1),此数列是首项为1,公比为的等比数列.(1)求数列an的通项;(2)求数列an的前n项和Sn.例2在等比数列an(nN*)中,a11,公比q0.设bn=log2an,且b1+b3+b5=6,b1b3b5=0.(1)求证:数列bn是等差数列;(2)求bn的前n项和Sn及an的通项an;(3)试比较an与Sn的大小.例3已知an是等比数列,a1=2, a3=18;bn是等差数列,b1=2,b1+b2+b3+b4=a1+a2+a320.(1)求数列bn的通项公式;(2)求数列bn的前n项和Sn的公式;(3)设Pn=b1+b4+b7+b3n2, Qn=b10+b12+b14+b2n+8,其中n=1,2,试比较Pn与Qn的大小,并证明你的结论.例4 已知等差数列an的首项a1=1,公差d0,且第二项、第五项、第十四项分别是等比数列bn
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年眼科急诊常见病症诊断与处理模拟考试答案及解析
- 2025安康岚皋县公益性岗位招聘(2人)笔试模拟试题及答案解析
- 2025年整形与美容外科手术技术考评模拟考试卷答案及解析
- 2025年手术解剖学常见病例鉴别模拟测试卷答案及解析
- 2025年耳鼻喉科常见急性感染处理模拟测试卷答案及解析
- 2025年人体解剖学技能操作考核答案及解析
- 2025年康复医学综合治疗方案设计考察答案及解析
- 小学数学核心知识点复习练习题
- 2025年法医学法医解剖术语填空题测验试卷答案及解析
- 2025年互联网行业互联网医疗发展前景分析报告
- 乡镇卫生院检验检查分级管理制度
- 大健康连锁店商业计划书
- 停车场突发事件应急处理预案
- 腹壁切口疝课件
- 《人工神经网络设计 》 课件 第3、4章 感知器;径向基函数神经网络
- 幼儿园培训返岗汇报
- 岩土钻掘工程学课件
- 北京市2025学年高二(上)第一次普通高中学业水平合格性考试物理试题(原卷版)
- 第九章 统计 单元测试(含解析)-2024-2025学年高一下学期数学人教A版(2019)必修第二册
- T-CDHA 20-2024 T-CAR 20-2024 供热碳排放核算和碳排放责任分摊方法
- 2025上半年信息系统项目管理师(高级软考)综合知识真题及解析
评论
0/150
提交评论