




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课题:2.2.3向量的数乘(2)班级: 姓名: 学号: 第 学习小组【学习目标】1、理解两个向量共线的含义,并掌握向量共线定理;2、能运用实数与向量的积解决有关问题。【课前预习】1、填空:(1) ;(2)当时,与方向 ;当时,与方向 ;当时,= ;当时,= 。(3) ; ; 。(4)若向量与方向相反,且,则与的关系是 。(5)设是已知向量,若,则 。2、如图,分别是的边、的中点,求证:与共线,并将用线性表示。ABCDE3、共线向量定理:如果存在一个实数,使 ,那么 。反之,如果与是共线向量,那么 。注意:可写成,但不能写成或。4、提问:上述定理中,若无条件,会有什么结果?5、向量共线定理如何用来解决点共线或线共点问题。【课堂研讨】例1、设是非零向量,若,试问:向量与是否共线?例2、如图,中,为直线上一点,求证:。ABCO思考:上例证明的结论表明:起点为,终点为直线上一点的向量可以用表示。那么两个不共线的向量可以表示平面内任一向量吗?【学后反思】共线向量定理及其运用;若,则时,三点共线。 课题:2.2.3向量的数乘(2)检测案班级: 姓名: 学号: 第 学习小组【课堂检测】1、已知向量,求证:与是共线向量。2、已知向量,求证:三点共线。ABCDE3、如图,在中,记求证:。4、如图,设点是线段的三等分点,若,试用表示向量ABQPO【课后巩固】1、点在线段上,且,设,则 ( )A、 B、 C、 D、2、若是平行四边形的中心,且,则 ( )A、 B、 C、 D、3、已知向量,则与 (填“共线”或“不共线”)。4、给出下列命题:若,则;若,则;若,则;则。其中,正确的序号是 。5、若是的重心,则 。6、已知,则 三点共线。7、已知非零向量和不共线,若和共线,求实数的值。8、设分别是的边上的点,且,。若记,试用表示。9、如图,平行四边形中,是的中点,交于,试用向量的方法证明:是的一个三等分点。ABCDME课题:2.2.3向量的数乘(2)班级: 姓名: 学号: 第 学习小组【学习目标】1、理解两个向量共线的含义,并掌握向量共线定理;2、能运用实数与向量的积解决有关问题。【课前预习】1、填空:(1) ;(2)当时,与方向 ;当时,与方向 ;当时,= ;当时,= 。(3) ; ; 。(4)若向量与方向相反,且,则与的关系是 。(5)设是已知向量,若,则 。2、如图,分别是的边、的中点,求证:与共线,并将用线性表示。ABCDE3、共线向量定理:如果存在一个实数,使 ,那么 。反之,如果与是共线向量,那么 。注意:可写成,但不能写成或。4、提问:上述定理中,若无条件,会有什么结果?5、向量共线定理如何用来解决点共线或线共点问题。【课堂研讨】例1、设是非零向量,若,试问:向量与是否共线?例2、如图,中,为直线上一点,求证:。ABCO思考:上例证明的结论表明:起点为,终点为直线上一点的向量可以用表示。那么两个不共线的向量可以表示平面内任一向量吗?【学后反思】共线向量定理及其运用;若,则时,三点共线。 课题:2.2.3向量的数乘(2)检测案班级: 姓名: 学号: 第 学习小组【课堂检测】1、已知向量,求证:与是共线向量。2、已知向量,求证:三点共线。ABCDE3、如图,在中,记求证:。4、如图,设点是线段的三等分点,若,试用表示向量ABQPO :Zxxk.Com【课后巩固】1、点在线段上,且,设,则 ( )A、 B、 C、 D、2、若是平行四边形的中心,且,则 ( )A、 B、 C、 D、3、已知向量,则与 (填“共线”或“不共线”)。4、给出下列命题:若,则;若,则;若,则;则。其中,正确的序号是 。5、若是的重心,则 。6、已知,则 三点共线。7、已知非零向量和不共
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年京东集团校园招聘笔试模拟题及面试技巧指南
- 2025年乡镇民政办招聘护理人员考试趋势分析及备考建议
- 2025年中级会计经济法考试要点及模拟题
- DB61T 1717.1-2023 消费品召回工作规范 第1部分:总则
- 2025年乡镇农业技术岗位招聘考试模拟试题及答案
- 电镀安全培训考核试题(附答案)
- 量子环境监测器创新创业项目商业计划书
- 海洋探险游戏与水下生态系统模拟创新创业项目商业计划书
- 虚拟现实心理治疗与康复训练创新创业项目商业计划书
- 虚拟现实企业培训创新创业项目商业计划书
- 钢厂脱硫脱硝工艺流程图
- 2025年五四制部编版道德与法治五年级上册教学计划(含进度表)
- 食品行业标准化管理体系
- 2025年度国家广播电视总局直属事业单位公开招聘310人笔试带答案
- 初中历年会考试卷及答案
- T-CNAS 18-2020 成人住院患者跌倒风险评估及预防
- 系统功能使用说明及教程
- 课件:《马克思主义基本原理概论》(23版):第五章 资本主义的发展及其趋势
- 2025年轻型民用无人驾驶航空器安全操控(多旋翼)理论备考试题(附答案)
- 2025年护士执业资格考试题库(精神科护理学专项)护理法律法规试题汇编
- 开学后学科竞赛准备计划
评论
0/150
提交评论