



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省灌云县陡沟中学高中数学 余弦定理3导学案 新人教A版必修5 一、学习目标:1. 掌握余弦定理及其证明方法;2. 初步掌握余弦定理的应用;3. 培养学生推理探索数学规律和归纳总结的思维能力二、学习重点:余弦定理及其应用;三、学习难点:用解析法证明余弦定理四、学习过程(根据学科特点选择性灵活运用)自主质疑一、问题情境在上节中,我们通过等式的两边与(为中边上的高)作数量积,将向量等式转化为数量关系,进而推出了正弦定理探索1还有其他途径将向量等式数量化吗?合作探究ABC向量的平方是向量数量化的一种手段因为(如图1),所以图1 即 ,同理可得 ,上述等式表明,三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍引出课题余弦定理交流展示对任意三角形,有余弦定理:,探索2:回顾正弦定理的证明,尝试用其他方法证明余弦定理师生共同活动,探索证明过程经过讨论,可归纳出如下方法方法一:如图2建立直角坐标系,则AC图2Byx所以 同理可证:,方法二:若是锐角,如图3,由作,垂足为,则BCAD图3 所以, ,即,类似地,可以证明当是钝角时,结论也成立,而当是直角时,结论显然成立同理可证 ,方法三:由正弦定理,得所以 同理可证 ,余弦定理也可以写成如下形式:,探索3 利用余弦定理可以解决斜三角形中的哪些类型问题?利用余弦定理,可以解决以下两类解斜三角形的问题:(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角五、学习评价 自我评价: A、满意( ) B、比较满意( ) C、不满意(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家电维修维护标准规定
- 2.2.4 心脏和血管的保护(说课稿)2023-2024学年七年级生物下册同步教学(冀少版河北专版)
- 2.2 设计和新建三维模型教学设计-2025-2026学年高中信息技术人教中图版2019选修5 三维设计与创意-人教中图版2019
- 江苏省泗洪县七年级生物下册 5.11.1 地面上的植物说课稿3 (新版)苏科版
- 第三节 海洋旅游业说课稿-2025-2026学年高中地理中图版2007选修2海洋地理-中图版2004
- 镗床视觉检测精度提升-洞察及研究
- 框架漏洞修复-洞察及研究
- 低碳校园课题申报书模板
- 护理职业技能提升与沟通案例分析
- 肾脏护理课题申报书怎么写
- 营养支持小组管理制度
- 口腔服务5S管理
- 儿童腹痛试题及答案解答
- 保安投诉管理制度
- 2025年高考江苏卷物理真题(原卷版)
- 【公开课】种子植物+第2课时课件-2024-2025学年人教版生物七年级上册
- 培训企业台账管理制度
- 职业院校模块化课程体系构建与实践研究
- 2024年贵州贵州贵安发展集团有限公司招聘笔试真题
- 人教部编版四年级上册语文第1单元(看拼音写词语)
- T/CAQI 70-2019管道直饮水系统安装验收要求
评论
0/150
提交评论