




已阅读5页,还剩26页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
DeepLearning,Deeplearningattractslotsofattention.,Ibelieveyouhaveseenlotsofexcitingresultsbefore.,DeeplearningtrendsatGoogle.Source:SIGMOD/JeffDean,UpsanddownsofDeepLearning,1958:Perceptron(linearmodel)1969:Perceptronhaslimitation1980s:Multi-layerperceptronDonothavesignificantdifferencefromDNNtoday1986:BackpropagationUsuallymorethan3hiddenlayersisnothelpful1989:1hiddenlayeris“goodenough”,whydeep?2006:RBMinitialization(breakthrough)2009:GPU2011:Starttobepopularinspeechrecognition2012:winILSVRCimagecompetition,ThreeStepsforDeepLearning,DeepLearningissosimple,NeuralNetwork,NeuralNetwork,“Neuron”,Differentconnectionleadstodifferentnetworkstructures,NeuralNetwork,Networkparameter:alltheweightsandbiasesinthe“neurons”,FullyConnectFeedforwardNetwork,1,-1,1,-2,1,-1,1,0,4,-2,0.98,0.12,FullyConnectFeedforwardNetwork,1,-2,1,-1,4,-2,0.98,0.12,2,-1,-1,-2,3,-1,4,-1,0.86,0.11,0.62,0.83,1,-1,FullyConnectFeedforwardNetwork,1,-2,1,-1,1,0,0.73,0.5,2,-1,-1,-2,3,-1,4,-1,0.72,0.12,0.51,0.85,0,0,-2,2,00=0.510.85,11=0.620.83,0,0,Thisisafunction.,Inputvector,outputvector,Givennetworkstructure,defineafunctionset,OutputLayer,HiddenLayers,InputLayer,FullyConnectFeedforwardNetwork,Input,Output,y1,y2,yM,neuron,8layers,19layers,22layers,AlexNet(2012),VGG(2014),GoogleNet(2014),16.4%,7.3%,6.7%,/slides/winter1516_lecture8.pdf,Deep=Manyhiddenlayers,AlexNet(2012),VGG(2014),GoogleNet(2014),152layers,3.57%,ResidualNet(2015),Taipei101,101layers,16.4%,7.3%,6.7%,Deep=Manyhiddenlayers,Specialstructure,MatrixOperation,1,-2,1,-1,1,0,4,-2,0.98,0.12,11,1211,+,10,0.980.12,=,1,-1,42,y1,y2,yM,NeuralNetwork,W1,W2,WL,b2,bL,x,a1,a2,y,aL-1,b1,=,y1,y2,yM,NeuralNetwork,W1,W2,WL,b2,bL,x,a1,a2,y,y,b1,W1,x,+,b2,W2,+,bL,WL,x,+,b1,Usingparallelcomputingtechniquestospeedupmatrixoperation,OutputLayer,y1,y2,yM,OutputLayer,HiddenLayers,InputLayer,Featureextractorreplacingfeatureengineering,=Multi-classClassifier,Softmax,ExampleApplication,Input,Output,16x16=256,Ink1Noink0,Eachdimensionrepresentstheconfidenceofadigit.,is1,is2,is0,0.1,0.7,0.2,Theimageis“2”,ExampleApplication,HandwritingDigitRecognition,Machine,“2”,is1,is2,is0,Whatisneededisafunction,Input:256-dimvector,output:10-dimvector,NeuralNetwork,OutputLayer,HiddenLayers,InputLayer,ExampleApplication,Input,Output,“2”,is1,is2,is0,AfunctionsetcontainingthecandidatesforHandwritingDigitRecognition,Youneedtodecidethenetworkstructuretoletagoodfunctioninyourfunctionset.,FAQ,Q:Howmanylayers?Howmanyneuronsforeachlayer?Q:Canthestructurebeautomaticallydetermined?E.g.EvolutionaryArtificialNeuralNetworksQ:Canwedesignthenetworkstructure?,ConvolutionalNeuralNetwork(CNN),ThreeStepsforDeepLearning,DeepLearningissosimple,NeuralNetwork,LossforanExample,y1,y2,y10,CrossEntropy,“1”,1,0,0,target,Softmax,=110,1,2,10,Givenasetofparameters,TotalLoss,NN,NN,NN,1,2,1,NN,3,Foralltrainingdata,=1,FindthenetworkparametersthatminimizetotallossL,TotalLoss:,2,3,FindafunctioninfunctionsetthatminimizestotallossL,ThreeStepsforDeepLearning,DeepLearningissosimple,NeuralNetwork,GradientDescent,1,Compute1,1,0.15,2,Compute2,2,0.05,1,Compute1,1,0.2,0.2,-0.1,0.3,121,=,gradient,GradientDescent,1,Compute1,1,0.15,1,Compute1,0.09,2,Compute2,2,0.05,2,Compute2,0.15,1,Compute1,1,0.2,1,Compute1,0.10,0.2,-0.1,0.3,GradientDescent,Thisisthe“learning”ofmachinesindeeplearning,Evenalphagousingthisapproach.,Ihopeyouarenottoodisappointed:p,Peopleimage,Actually.,Backpropagation,Backpropagation:anefficientwaytocomputeinneuralnetwork,Ref:.tw/tlkagk/courses/MLDS_2015_2/Lecture/DNN%20backprop.ecm.mp4/index.html,ConcludingRemarks,NeuralNetwork,Whatarethebenefitsofdeeparchitecture?,DeeperisBetter?,Seide,Frank,GangLi,andDongYu.ConversationalSpeechTranscriptionUsingContext-DependentDeepNeuralNetworks.Interspeech.2011.,Notsurprised,moreparameters,betterperformance,UniversalityTheorem,Referenceforthereason:,Anycontinuousfunctionf,Canberealizedbyanetworkwithonehiddenlayer,(givenenough
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 脊髓损伤病人的护理查房
- 2025资产管理服务合同范本
- 2025建筑工程项目设计合同
- 2025房屋租赁合同范本租赁合同
- 2025国际航空运输合同示范文本
- 2025届山东省平邑第一中学校本部高三二轮双周模拟试题(含答案)(三)
- 初级经济法课件
- 2025房地产代理公司与客户合同范本
- 小人国的儿童观与教育观
- 2025成都市存量房屋买卖合同书
- 注册制改革对市场治理机制的影响及优化路径
- 4-13-01-06 国家职业标准档案数字化管理师S (2025年版)
- 学龄儿童体重管理营养指导规范课件
- 客户维护合同协议
- 2025陕西建筑安全员C证(专职安全员)考试题库
- 消毒供应中心规范培训
- 2025重庆华地资环科技有限公司校园招聘9人笔试参考题库附带答案详解
- 易制毒化学品销售人员岗位职责
- 小区二次供水水箱清洗消毒的监督流程课件
- 自主智能系统知到课后答案智慧树章节测试答案2025年春哈尔滨工程大学
- GB/T 6433-2025饲料中粗脂肪的测定
评论
0/150
提交评论