




已阅读5页,还剩26页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
DeepLearning,Deeplearningattractslotsofattention.,Ibelieveyouhaveseenlotsofexcitingresultsbefore.,DeeplearningtrendsatGoogle.Source:SIGMOD/JeffDean,UpsanddownsofDeepLearning,1958:Perceptron(linearmodel)1969:Perceptronhaslimitation1980s:Multi-layerperceptronDonothavesignificantdifferencefromDNNtoday1986:BackpropagationUsuallymorethan3hiddenlayersisnothelpful1989:1hiddenlayeris“goodenough”,whydeep?2006:RBMinitialization(breakthrough)2009:GPU2011:Starttobepopularinspeechrecognition2012:winILSVRCimagecompetition,ThreeStepsforDeepLearning,DeepLearningissosimple,NeuralNetwork,NeuralNetwork,“Neuron”,Differentconnectionleadstodifferentnetworkstructures,NeuralNetwork,Networkparameter:alltheweightsandbiasesinthe“neurons”,FullyConnectFeedforwardNetwork,1,-1,1,-2,1,-1,1,0,4,-2,0.98,0.12,FullyConnectFeedforwardNetwork,1,-2,1,-1,4,-2,0.98,0.12,2,-1,-1,-2,3,-1,4,-1,0.86,0.11,0.62,0.83,1,-1,FullyConnectFeedforwardNetwork,1,-2,1,-1,1,0,0.73,0.5,2,-1,-1,-2,3,-1,4,-1,0.72,0.12,0.51,0.85,0,0,-2,2,00=0.510.85,11=0.620.83,0,0,Thisisafunction.,Inputvector,outputvector,Givennetworkstructure,defineafunctionset,OutputLayer,HiddenLayers,InputLayer,FullyConnectFeedforwardNetwork,Input,Output,y1,y2,yM,neuron,8layers,19layers,22layers,AlexNet(2012),VGG(2014),GoogleNet(2014),16.4%,7.3%,6.7%,/slides/winter1516_lecture8.pdf,Deep=Manyhiddenlayers,AlexNet(2012),VGG(2014),GoogleNet(2014),152layers,3.57%,ResidualNet(2015),Taipei101,101layers,16.4%,7.3%,6.7%,Deep=Manyhiddenlayers,Specialstructure,MatrixOperation,1,-2,1,-1,1,0,4,-2,0.98,0.12,11,1211,+,10,0.980.12,=,1,-1,42,y1,y2,yM,NeuralNetwork,W1,W2,WL,b2,bL,x,a1,a2,y,aL-1,b1,=,y1,y2,yM,NeuralNetwork,W1,W2,WL,b2,bL,x,a1,a2,y,y,b1,W1,x,+,b2,W2,+,bL,WL,x,+,b1,Usingparallelcomputingtechniquestospeedupmatrixoperation,OutputLayer,y1,y2,yM,OutputLayer,HiddenLayers,InputLayer,Featureextractorreplacingfeatureengineering,=Multi-classClassifier,Softmax,ExampleApplication,Input,Output,16x16=256,Ink1Noink0,Eachdimensionrepresentstheconfidenceofadigit.,is1,is2,is0,0.1,0.7,0.2,Theimageis“2”,ExampleApplication,HandwritingDigitRecognition,Machine,“2”,is1,is2,is0,Whatisneededisafunction,Input:256-dimvector,output:10-dimvector,NeuralNetwork,OutputLayer,HiddenLayers,InputLayer,ExampleApplication,Input,Output,“2”,is1,is2,is0,AfunctionsetcontainingthecandidatesforHandwritingDigitRecognition,Youneedtodecidethenetworkstructuretoletagoodfunctioninyourfunctionset.,FAQ,Q:Howmanylayers?Howmanyneuronsforeachlayer?Q:Canthestructurebeautomaticallydetermined?E.g.EvolutionaryArtificialNeuralNetworksQ:Canwedesignthenetworkstructure?,ConvolutionalNeuralNetwork(CNN),ThreeStepsforDeepLearning,DeepLearningissosimple,NeuralNetwork,LossforanExample,y1,y2,y10,CrossEntropy,“1”,1,0,0,target,Softmax,=110,1,2,10,Givenasetofparameters,TotalLoss,NN,NN,NN,1,2,1,NN,3,Foralltrainingdata,=1,FindthenetworkparametersthatminimizetotallossL,TotalLoss:,2,3,FindafunctioninfunctionsetthatminimizestotallossL,ThreeStepsforDeepLearning,DeepLearningissosimple,NeuralNetwork,GradientDescent,1,Compute1,1,0.15,2,Compute2,2,0.05,1,Compute1,1,0.2,0.2,-0.1,0.3,121,=,gradient,GradientDescent,1,Compute1,1,0.15,1,Compute1,0.09,2,Compute2,2,0.05,2,Compute2,0.15,1,Compute1,1,0.2,1,Compute1,0.10,0.2,-0.1,0.3,GradientDescent,Thisisthe“learning”ofmachinesindeeplearning,Evenalphagousingthisapproach.,Ihopeyouarenottoodisappointed:p,Peopleimage,Actually.,Backpropagation,Backpropagation:anefficientwaytocomputeinneuralnetwork,Ref:.tw/tlkagk/courses/MLDS_2015_2/Lecture/DNN%20backprop.ecm.mp4/index.html,ConcludingRemarks,NeuralNetwork,Whatarethebenefitsofdeeparchitecture?,DeeperisBetter?,Seide,Frank,GangLi,andDongYu.ConversationalSpeechTranscriptionUsingContext-DependentDeepNeuralNetworks.Interspeech.2011.,Notsurprised,moreparameters,betterperformance,UniversalityTheorem,Referenceforthereason:,Anycontinuousfunctionf,Canberealizedbyanetworkwithonehiddenlayer,(givenenough
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年公立医院公共空间清洁与消毒用品一站式服务合同
- 2025年城市社区生鲜配送服务长期合作协议
- 2025年金融资产债务重组与清算服务专项合同
- 2025年员工与企业联合创业股权投资合作协议
- 毛特题库及答案
- 卖炭翁鉴赏题目及答案
- 高效节能绿色建材采购及第三方检测认证服务合同
- 2025年度危化品物流运输合同安全协议与损害赔偿细则
- 2025年医疗耗材采购与供应链金融风险控制合作协议
- 2025年智慧科技园区甲级写字楼租赁服务协议
- 2025年9月新版用工合同(合作协议书)范本(可规避风险)
- 中国心房颤动管理指南(2025)解读
- 叉车生产安全知识培训课件
- 大学英语四级考试高频词汇1500
- 现场安全文明施工管理标准化手册
- 技术经济学概论整套课件完整版电子教案课件汇总(最新)
- 4-1第七章市场价格比较法
- 风力发电项目报价清单 (风机基础等)
- (高清正版)T-CAGHP 021—2018泥石流防治工程设计规范(试行)
- (高清正版)SL 310-2019 村镇供水工程技术规范(完整版)
- 挂靠社保的免责协议
评论
0/150
提交评论