超分子测试方法总结PPT演示课件_第1页
超分子测试方法总结PPT演示课件_第2页
超分子测试方法总结PPT演示课件_第3页
超分子测试方法总结PPT演示课件_第4页
超分子测试方法总结PPT演示课件_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

总结,超分子材料分析测试方法,1,现代仪器分析方法,组成分析,结构分析,无机元素分析,有机元素分析,晶体材料分析,有机材料分析,AAS,ICP,有机元素分析仪(CHNOS),XRD,SCD,四大光谱,2,现代仪器分析方法,形貌分析,SEM,TEM,AFM,冷场SEM,W灯丝、LaB6SEM,HRTEM,STEM,FE-SEM,热场SEM,TEM,选取电子衍射像(SAED)高分辨像(晶格条文)形貌像(低倍,高倍)EDS,二次电子像(低倍,高倍)背散射电子像(相貌、组成分析)EDS(谱、点扫、线扫及面扫),纳米粒子成像表面平整不需喷金,与XPS区别?,3,X射线光电子能谱(XPS,全称为X-rayPhotoelectronSpectroscopy),定义:是一种基于光电效应的电子能谱,它是利用X射线光子激发出物质表面原子的内层电子,通过对这些电子进行能量分析而获得的一种能谱。,XPS的最大特色:在于能获取丰富的化学信息,对样品表面的损伤最轻微,表面的最基本XPS分析可提供表面存在的所有元素(除H和He外)的定性和定量信息。,正是由于XPS含有化学信息,它也通常被称为化学分析电子能谱(ESCA,全称为ElectronSpectroscopyforChemicalAnalysis),XPS的更高级应用可得到关于表面的化学组成和形成的更详细的信息。,4,XPS,EDS有哪些区别呢?,5,Ag/ZnOheterostructurenanocatalystswithAgcontentof1wt%aresuccessfullypreparedthroughthreedifferentsimplemethods,wherechemicalreductionandphotolysisreactionareadoptedtofabricatetheheterostructure.ThedispersityofAgclustersand/ornanoparticlesinAg/ZnOnanocatalystisinvestigatedbyEDXmappingandXPStechniques.Theexperimentalresultsshowthatdeposition-precipitationisanefficientmethodtosynthesizeAg/ZnOnanocatalystwithhighlydispersedAgclustersand/ornanoparticles;thephotocatalyticactivityofAg/ZnOphotocatalystsmainlydependsonthedispersityofmetallicAginAg/ZnOnanocatalyst;thehigherthedispersityofmetallicAginAg/ZnOnanocatalystis,thehigherthephotocatalyticactivityofAg/ZnOphotocatalystshouldbe.,PhotocatalyticActivityofAg/ZnOHeterostructureNanocatalyst:CorrelationbetweenStructureandProperty,6,PhotocatalyticActivityofAg/ZnOHeterostructureNanocatalyst:CorrelationbetweenStructureandProperty,7,Figure2.Low-magnificationSEMimagesandEDXmappingoftheas-synthesizedsamples:(a)Ag/ZnO-DP,(b)Ag/ZnO-CPand(c)Ag/ZnOST;(d)EDXSspectrarecordedfromthecorrespondingrectangularregionoftheas-synthesizedsamplesina-c.Thecoverageofbluecolorina-creflectsAgdistributionsintheas-synthesizedsamples,andtheinsetinaandcisthecorrespondingHRTEMimageofasingleAg/ZnOheterostructurenanocrystal,8,373.2eV,367.2eV,bulkAgAg3d5/2,368.3eVAg3d3/2,374.3eV,TheshiftofthebindingenergyofmetallicAgindicatesthatthereisastronginteractionbetweenmetallicAgandZnOnanocrystals,AccordingtotheEDXmappingandXPSresults,thisphenomenonshouldbeattributedtothehighestdispersityofmetallicAgonthesurfaceofZnOnanocrystalsforAg/ZnO-DPsample.,Figure3.Ag3dXPSspectraoftheas-synthesizedsamples:(a)Ag/ZnO-DP,(b)Ag/ZnO-CP,and(c)Ag/ZnO-ST.,9,Figure4.(a)UV-visdiffuse-reflectanceand(b)PLspectraoftheas-synthesizedAg/ZnOheterostructurenanocrystals.,Theappearanceoftwokindsofcharacteristicabsorptionbandsalsoconfirmsthattheas-synthesizedsamplesarecomposedofzerovalentAgandZnO.,10,Figure5.PhotodegradationofMObytheas-synthesizedsamples:(a)Ag/ZnO-DP,(b)Ag/ZnO-CP,and(c)Ag/ZnO-ST.Theinsetisthephotographoftheas-synthesizedsamplesdispersedinMOsolution(theconcentrationofthecatalystsis1.25mg/mL).,11,TEMandHRTEMimagesforthegrownZnOnano-needle.,FE-SEMimagesforthenanostructuresgrownonsiliconsubstrate.ZnOgrownfor:(a)30min,(b)60min,(c)180min,and(d)ZnOnano-needlesafterannealingfor180minat500ConlyunderN2atmosphere.,CharacterizationofZnOneedle-shapednanostructuresgrownonNiOcatalyst-coatedSisubstrates,12,TEMimageofanAl2O3-depositedZnOnanorod.Thecentralpart(A)istheZnOnanorodandtheouterpart(B)isthedepositedAl2O3layer.,HRTEMimageofanAl2O3-depositedZnOnanorod.,Al2O3coatingofZnOnanorodsbyatomiclayerdeposition,13,HRTEMimageofananowire.Theleftpartpresentsinterplanarseparationof0.52nmandconsistsofasingleZnOcrystal.Thecrystalgrowthdirection001isperpendiculartotheplanes.ThesmallinclusionsontherightconsistofEr2O3nanocrystals.Theinterplanarseparationof0.30nmcorrespondstothe222direction.,SAEDpatternobtainedatthesurfaceofananowire.Therectangularpatternisduetothe210directioninZnO.TheringsareduetodifferentorientationsofEr2O3nanocryst,StructuralcharacterizationofZnO/Er2O3core/shellnanowires,14,ControlledGrowthandCharacterizationofTungstenOxideNanowiresUsingThermalEvaporationofWO3Powder,SEMimagesofWO3nanowiresgrownontungstensubstrate:(a,b)topviews,(c)tiltview,and(d)EDXspectrumofthenanowiresample,15,Figure3.(a)HRTEMimageofWO3nanowire.Insets(b,c)areenlargementHRTEMsfromsquaresin(a).(d)Diffractionpatternoftungstenoxidenanowires.,Itshowsasinglenanowirewithadiameterof70nmthatexhibitsawell-definedlatticefringeseparationwith0.38nmcorrespondingto001planesofamonoclinicWO3crystal(JCPDSCardNo.75-2072).,16,Figure4.XRDprofileofWO3nanowires.,ThemainpeakscanbewellindexedtobeamonoclinicWO3phase(JCPDSCardNo.75-2072;a)7.274,b)7.501,c)3.824,and)89.930;spacegroupP21/a),whichisingoodagreementwithourTEMandSAEDanalysis.,17,Figure5.XPSprofilesofWO3nanowires.(a)W4fpeaks:thedoublet4f7/2and4f5/2,atbindingenergiesof35.5and37.5eV,respectively,andthetwofitteddoubletsrepresentingthedifferentoxidationstatesofW(greenline,W6+;blueline,W5+)forspecimengrownat1000C.(b)O1speaks:apeakat530.5eVcorrespondingtothevalenceofthetungstenequalto+6andtheotherpeakat532.2eVcorrespondingtoresidualwaterboundinthenanowirestructureoradsorbedonthesurface.,18,Figure6.EvolutionofW4fspectraforthermalannealedWO3nanowiresinthetemperaturerangeof900-1100Cinavacuum.,TheeffectsofthegrowthtemperatureontheoxidationstatesofthetungstenoxidenanowireswerestudiedbyXPS.TheshapeoftheW4fpeakschangesatdifferenttemperatures(Figure6).TheW4fpeakofsamplesannealedat1000-1100CshowsastoichiometricfeatureofWO3.However,forsamplesannealedat900C,thepeakbecomesbroaderandashoulderformsatthehigherbindingenergyside.Thisshouldercorrespondstoloweroxidationstateof2inthexofWOxstructure.Theseresultsindicatethat,athighgrowthtemperatures,WO2readilytransformsintoWO3.,19,Figure7.Ramanspectrumofas-synthesizedprod

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论