




已阅读5页,还剩25页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
24.2与圆有关的位置关系,24.2.1点和圆的位置关系,我国射击运动员在奥运会上屡获金牌,为我国赢得荣誉,右图是射击靶的示意图,它是由许多同心圆(圆心相同,半径不等的圆)构成的,你知道击中靶上不同位置的成绩是如何计算的吗?,观察,r,问题:设O半径为r,说出来点A,点B,点C与圆心O的距离与半径的关系:,C,O,A,B,OCr.,问题:观察图中点A,点B,点C与圆的位置关系?,点C在圆外.,点A在圆内,,点B在圆上,,OAr,练习:已知圆的半径等于5厘米,点到圆心的距离是:A、8厘米B、4厘米C、5厘米。请你分别说出点与圆的位置关系。,O,例:如图已知矩形ABCD的边AB=3厘米,AD=4厘米,(1)以点A为圆心,3厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?,(B在圆上,D在圆外,C在圆外),(2)以点A为圆心,4厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?,(B在圆内,D在圆上,C在圆外),(3)以点A为圆心,5厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?,(B在圆内,D在圆内,C在圆上),2cm,3cm,1,画出由所有到已知点的距离大于或等于2cm并且小于或等于3cm的点组成的图形.,O,思考,体育课上,小明和小雨的铅球成绩分别是6.4m和5.1m,他们投出的铅球分别落在图中哪个区域内?,思考,A,A,B,过一点可作几条直线?过两点可以作几条直线?过三点呢?,过两点有且只有一条直线(直线公理)(“有且只有”就是“确定”的意思),经过一点可以作无数条直线;,回忆思考:,过三点,直线公理:两点确定一条直线,对于一个圆来说,过几个点能作一个圆,并且只能作一个圆?,类比探究:,过一点能作几个圆?,无数个,过A点的圆的圆心有何特点?,平面上除A点外的任意一点,过两点能作几个圆?,过A、B两点的圆的圆心有何特点?,经过两点A,B的圆的圆心在线段AB的垂直平分线上.以线段AB的垂直平分线上的任意一点为圆心,这点到A或B的距离为半径作圆.,1、连结AB,作线段AB的垂直平分线DE,,2、连结BC,作线段BC的垂直平分线FG,交DE于点O,,3、以O为圆心,OB为半径作圆,,作法:,O就是所求作的圆,已知:不在同一直线上的三点A、B、C求作:O,使它经过A、B、C,1、三点不共线,请你证明你作的圆符合要求,证明:点O在AB的垂直平分线上,OA=OB.同理,OB=OC.OA=OB=OC.点A,B,C在以O为圆心,OA长为半径的圆上.O就是所求作的圆,在上面的作图过程中.直线DE和FG只有一个交点O,并且点O到A,B,C三个点的距离相等,经过点A,B,C三点可以作一个圆,并且只能作一个圆.,定理:不在同一直线上的三点确定一个圆,我们的收获,1。由定理可知:经过三角形三个顶点可以作一个圆.并且只能作一个圆.2。经过三角形各顶点的圆叫做三角形的外接圆。3。三角形外接圆的圆心叫做三角形的外心,这个三角形叫做这个圆的内接三角形。,圆的内接三角形,三角形的外接圆,三角形的外心,A,B,C,O,直角三角形外心是斜边AB的中点,钝角三角形外心在ABC的外面,三角形的外心是否一定在三角形的内部?,(2)经过同一条直线三个点能作出一个圆吗?,如图,假设过同一条直线l上三点A、B、C可以作一个圆,设这个圆的圆心为P,那么点P既在线段AB的垂直平分线l1上,又在线段BC的垂直平分线l2上,即点P为l1与l2的交点,而l1l,l2l这与我们以前学过的“过一点有且只有一条直线与已知直线垂直”相矛盾,所以过同一条直线上的三点不能作圆,先假设命题的结论不成立,然后由此经过推理得出矛盾(常与公理、定理、定义或已知条件相矛盾),由矛盾判定假设不正确,从而得到原命题成立,这种方法叫做反证法,什么叫反证法?,课堂练习,判断题:1、过三点一定可以作圆()2、三角形有且只有一个外接圆()3、任意一个圆有一个内接三角形,并且只有一个内接三角形()4、三角形的外心就是这个三角形任意两边垂直平分线的交点()5、三角形的外心到三边的距离相等(),错,对,错,对,错,思考:如图,CD所在的直线垂直平分线段AB,怎样用这样的工具找到圆形工件的圆心,D,O,A、B两点在圆上,所以圆心必与A、B两点的距离相等,,又和一条线段的两个端点距离相等的点在这条线段的垂直平分线上,,圆心在CD所在的直线上,因此可以做任意两条直径,它们的交点为圆心.,如何解决“破镜重圆”的问题:,圆心一定在弦的垂直平分线上,思考:任意四个点是不是可以作一个圆?请举例说明.,不一定,1.四点在一条直线上不能作圆;,3.四点中任意三点不在一条直线可能作圆也可能作不出一个圆.,A,B,C,D,A,B,C,D,A,B,C,D,A,B,C,D,2.三点在同一直线上,另一点不在这条直线上不能作圆;,1,如图,等腰ABC中,点O为外心,求外接圆的半径。,巩固练习,2、为美化校园,学校要把一块三角形空地扩建成一个圆形喷水池,在三角形三个顶点处各有一棵名贵花树(A、B、C),若不动花树,还要建一个最大的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 日语试题试卷及答案
- 税法总论考试题及答案
- 2025年广东省合成氨工艺操作证理论考试练习题库(含答案)
- 2025年阜阳市颍泉区选调区内教师考试笔试试题(含答案)
- 2025年达州市大竹县城区学校考调教师笔试试题(含答案)
- 2025年注册会计师模拟题和答案分析
- 2024年劳务员之劳务员专业管理实务练习题一及答案
- 北京热力保密知识培训课件
- 足部损伤诊疗与护理考核试题及答案
- 2025年临床VTE防治考核题及答案
- 数学集体备课汇报展示
- 食品生产企业采购管理制度
- 2025年养老护理员职业资格技师培训试题(含答案)
- 《鸿蒙应用开发项目教程》全套教学课件
- 四川省广安市2024-2025学年高一下学期期末考试数学试题(含答案)
- 电缆测试技术课件
- 政协大走访活动方案
- 个人养老金课件
- 2025至2030中国氧化钪行业需求状况及未来趋势前景研判报告
- udi追溯管理制度
- 新能源产业园区厂房物业管理及绿色能源应用合同
评论
0/150
提交评论