高阶线性微分方程复习.ppt_第1页
高阶线性微分方程复习.ppt_第2页
高阶线性微分方程复习.ppt_第3页
高阶线性微分方程复习.ppt_第4页
高阶线性微分方程复习.ppt_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二阶常系数齐线性微分方程,特征方程,特征根,通解形式,n阶常系数齐线性微分方程的特征方程为,例1.求解方程y2y3y=0,解:特征方程r22r3=0,得特征根r1=1,r2=3,(r+1)(r3)=0,解:特征方程,得r1=r2=5,例2.,例3.,解:,得,例4.求解方程y(4)+5y+9y+7y+2y=0,解:特征方程r4+5r3+9r2+7r+2=0,可求得r1=2,r2=r3=r4=1,则y1=e2x,y2=ex,y3=xex,y4=x2ex,当二阶常系数非齐线性方程,它有下列形式的特解:,其中:,例1.,解:,=2,P1(x)=4x+5,特征方程:r23r20得r1=2,r2=1,所以设y*=xe2x(Ax+B),y*=2Ax2e2x+2(A+B)xe2x+Be2x,y*=4Ax2e2x+4(2A+B)xe2x+2(A+2B)e2x,代入方程化简得,2Ax+(2A+B)=4x+5,比较得,2A=4,2A+B=5,例2.,解:,=0,P2(x)=2x23,特征方程r2+1=0,得r1,2=i,所以设y*=Ax2+Bx+C,代入方程得Ax2+Bx+(2A+C)=2x23,比较得A=2,B=0,2A+C=3,有A=2,B=0,C=7,例3.,=1,P0(x)=1,解:,特征方程r22r10,r1,21,故设y*=x2Aex,求得,其中,k,例6.,解:,特征方程r2+4=0,得r1,2=2i,例7.,解:,特征方程r2+1=0,得r1,2=i,例8.,解:,特征方程r25r60,得r1=2,r2=3,(2)再求y*:,有,(1),(2),求方程(1)的y1*:设y1*=Ax

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论