




已阅读5页,还剩20页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.3.1平面向量的基本定理2.3.2平面向量的正交分解及坐标表示,2.3.3平面向量的坐标运算,shalom,温故知新,向量的加法(三角形法则),向量的加法(平行四边形法则),向量的减法(三角形法则),向量的数乘运算,(1)|a|=|a|(2)当0时,a的方向与a方向相同;当0时,a的方向与a方向相反;特别地,当=0或a=0时,a=0,对实数和向量a,特别地:,3.向量共线定理:,向量a(a0)与b共线,当且仅当有唯一一个实数,使b=a,问题:一天,2只住在正西方向的大猴子和4只住在北偏东30方向的小猴子同时发现一筐桃子,他们分别朝着自己住的方向拉,已知每只大猴子的拉力是100牛顿,每只小猴子的拉力是50牛顿,问这筐桃子往哪边运动?,问题:一天,2只住在正西方向的大猴子和4只住在北偏东30方向的小猴子同时发现一筐桃子,他们分别朝着自己住的方向拉,已知每只大猴子的拉力是100牛顿,每只小猴子的拉力是50牛顿,问这筐桃子往哪边运动?,如果是1只大猴子和4只小猴子呢?,如果,是同一平面内的两个不共线的向量,那么对于这一平面内的任一向量,有且只有一对实数、使其中不共线的向量,叫做表示这一平面内的所有向量的一组基底。,平面向量的基本定理,思考:平面内,向量的基底是否唯一?,例1已知向量e1,e2,求作向量-2.5e1+3e2.,e1,e2,O,C,B,e1,e2,a,平行四边形做法唯一,所以实数对x,y存在唯一,对定理的理解:,1)基底:不共线的向量e1e2。同一平面可以有不同基底,2)平面内的任一向量都可以沿两个不共线的方向分解成两个向量的和的形式;,3)分解是唯一的,思考:一天,1只住在正西方向的大猴子和住在北偏东30方向的小猴子同时发现一筐桃子,他们分别朝着自己住的方向拉,已知每只大猴子的拉力是100牛顿,每只小猴子的拉力是50牛顿,问这筐桃子往正北运动,要几只小猴子?,30,?,30,向量的夹角,共起点,把一个向量分解为两个互相垂直的向量,叫作把向量正交分解,2.3.2平面向量的正交分解,10,01,00,2.3.2平面向量的坐标表示,由a唯一确定,2点A的坐标与向量a的坐标的关系?,两者相同,概念理解,3两个向量相等的充要条件,利用坐标如何表示?,2.3.2平面向量的坐标表示,解:由图可知,同理,,课堂小结:,2.向量的夹角:共起点的两个向量形成的角,4.向量的坐标表示,把一个向量分解为两个垂直的向量,叫做把向量正交分解。,分别与x轴、y轴方向相同的两单位向量i、j作为基底,任一向量a,用这组基底可表示为a=xi+yj,(x,y)叫做向量a的坐标,2.3.3平面向量的坐标运算,平面向量的坐标运算,1.已知a,b,求a+b,a-b,解:a+b=(i+j)+(i+j),=(+)i+(+)j,两个向量和(差)的坐标分别等于这两个向量相应坐标的和(差),2.3.3平面向量的坐标运算,解:,一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标,实数与向量的积的坐标等于这个实数乘原来的向量的相应坐标,2.3.3平面向量的坐标运算,例4已知a=(2,1),b=(-3,4),求a+b,a-b,3a+4b的坐标,a-b=(2,1)-(-3,4)=(5,-3);,3a+4b=3(2,1)+4(-3,4)=(6,3)+(-12,16)=(-6,19),2.3.3平面向量的坐标运算,例5已知ABCD的三个顶点A、B、C的坐标分别为(2,1)、(1,3)、(3,4),求顶点D的坐标,解法1:设顶点D的坐标为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年秋新北师大版数学一年级上册教学课件 第一单元 生活中的数 第7课时 快乐的午餐
- 水质实验室基础知识培训课件
- 新型储能项目安全生产方案
- 聚酰亚胺薄膜生产线项目运营管理手册
- 施工现场卫生管理方案
- 化工产业园危险化学品应急响应方案
- 一、机械能(第2课时) -苏科版九年级《物理》上册考点练习
- 影视艺术特性74课件
- 水电消防知识培训课件
- 2025版建筑工程设计与施工一体化论文集合同
- 锂离子电池正极材料研究进展
- 二手房屋买卖物品交接清单
- 技师论文 变频器的维修与保养
- 非标自动化设备项目进度表
- 诊断学教学胸部查体
- 桥梁安全事故案例警示
- YY/T 1095-2015肌电生物反馈仪
- SB/T 10460-2008商用电开水器
- GB/T 9124.1-2019钢制管法兰第1部分:PN系列
- GA 1800.2-2021电力系统治安反恐防范要求第2部分:火力发电企业
- 欣旺集团种禽养殖管理制度手册
评论
0/150
提交评论