




已阅读5页,还剩40页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ConvolutionalNeuralNetwork,WhyCNNforImage?,Canthenetworkbesimplifiedbyconsideringthepropertiesofimages?,Themostbasicclassifiers,Use1stlayerasmoduletobuildclassifiers,Use2ndlayerasmodule,Zeiler,M.D.,ECCV2014,Representedaspixels,WhyCNNforImage,Somepatternsaremuchsmallerthanthewholeimage,Aneurondoesnothavetoseethewholeimagetodiscoverthepattern.,“beak”detector,Connectingtosmallregionwithlessparameters,WhyCNNforImage,Thesamepatternsappearindifferentregions.,“upper-leftbeak”detector,“middlebeak”detector,Theycanusethesamesetofparameters.,Doalmostthesamething,WhyCNNforImage,Subsamplingthepixelswillnotchangetheobject,subsampling,bird,bird,Wecansubsamplethepixelstomakeimagesmaller,Lessparametersforthenetworktoprocesstheimage,ThewholeCNN,FullyConnectedFeedforwardnetwork,catdog,Convolution,MaxPooling,Convolution,MaxPooling,Flatten,Canrepeatmanytimes,ThewholeCNN,Convolution,MaxPooling,Convolution,MaxPooling,Flatten,Canrepeatmanytimes,Somepatternsaremuchsmallerthanthewholeimage,Thesamepatternsappearindifferentregions.,Subsamplingthepixelswillnotchangetheobject,Property1,Property2,Property3,ThewholeCNN,FullyConnectedFeedforwardnetwork,catdog,Convolution,MaxPooling,Convolution,MaxPooling,Flatten,Canrepeatmanytimes,CNNConvolution,6x6image,Filter1,Filter2,Thosearethenetworkparameterstobelearned.,Matrix,Matrix,Eachfilterdetectsasmallpattern(3x3).,Property1,CNNConvolution,6x6image,Filter1,3,-1,stride=1,CNNConvolution,6x6image,Filter1,3,-3,Ifstride=2,Wesetstride=1below,CNNConvolution,6x6image,Filter1,3,-1,-3,-1,-3,1,0,-3,-3,-3,0,1,3,-2,-2,-1,stride=1,Property2,CNNConvolution,6x6image,3,-1,-3,-1,-3,1,0,-3,-3,-3,0,1,3,-2,-2,-1,Filter2,-1,-1,-1,-1,-1,-1,-2,1,-1,-1,-2,1,-1,0,-4,3,Dothesameprocessforeveryfilter,stride=1,4x4image,FeatureMap,CNNColorfulimage,Filter1,Filter2,Colorfulimage,image,convolution,Convolutionv.s.FullyConnected,Fully-connected,6x6image,Filter1,1:,2:,3:,7:,8:,9:,13:,14:,15:,Onlyconnectto9input,notfullyconnected,4:,10:,16:,1,0,0,0,0,1,0,0,0,0,1,1,3,Lessparameters!,Filter1,1:,2:,3:,7:,8:,9:,13:,14:,15:,4:,10:,16:,1,0,0,0,0,1,0,0,0,0,1,1,3,-1,Sharedweights,6x6image,Lessparameters!,Evenlessparameters!,ThewholeCNN,FullyConnectedFeedforwardnetwork,catdog,Convolution,MaxPooling,Convolution,MaxPooling,Flatten,Canrepeatmanytimes,CNNMaxPooling,3,-1,-3,-1,-3,1,0,-3,-3,-3,0,1,3,-2,-2,-1,Filter2,-1,-1,-1,-1,-1,-1,-2,1,-1,-1,-2,1,-1,0,-4,3,Filter1,CNNMaxPooling,6x6image,3,0,1,3,-1,1,3,0,2x2image,Eachfilterisachannel,Newimagebutsmaller,Conv,MaxPooling,ThewholeCNN,Convolution,MaxPooling,Convolution,MaxPooling,Canrepeatmanytimes,Anewimage,Thenumberofthechannelisthenumberoffilters,Smallerthantheoriginalimage,ThewholeCNN,FullyConnectedFeedforwardnetwork,catdog,Convolution,MaxPooling,Convolution,MaxPooling,Flatten,Anewimage,Anewimage,Flatten,Flatten,3,0,1,3,-1,1,0,3,FullyConnectedFeedforwardnetwork,Onlymodifiedthenetworkstructureandinputformat(vector-3-Dtensor),CNNinKeras,Convolution,MaxPooling,Convolution,MaxPooling,input,Thereare253x3filters.,Input_shape=(1,28,28),1:black/weight,3:RGB,28x28pixels,3,-1,-3,1,3,Onlymodifiedthenetworkstructureandinputformat(vector-3-Dtensor),CNNinKeras,Convolution,MaxPooling,Convolution,MaxPooling,input,1x28x28,25x26x26,25x13x13,50 x11x11,50 x5x5,Howmanyparametersforeachfilter?,Howmanyparametersforeachfilter?,9,225,Onlymodifiedthenetworkstructureandinputformat(vector-3-Dtensor),CNNinKeras,Convolution,MaxPooling,Convolution,MaxPooling,input,1x28x28,25x26x26,25x13x13,50 x11x11,50 x5x5,Flatten,1250,FullyConnectedFeedforwardnetwork,output,LiveDemo,Convolution,MaxPooling,Convolution,MaxPooling,input,253x3filters,503x3filters,WhatdoesCNNlearn?,50 x11x11,Theoutputofthek-thfilterisa11x11matrix.,Degreeoftheactivationofthek-thfilter:,=111=111,11,11,x,=max,(gradientascent),Convolution,MaxPooling,Convolution,MaxPooling,input,253x3filters,503x3filters,WhatdoesCNNlearn?,50 x11x11,Theoutputofthek-thfilterisa11x11matrix.,Degreeoftheactivationofthek-thfilter:,=111=111,=max,(gradientascent),Foreachfilter,WhatdoesCNNlearn?,Convolution,MaxPooling,input,Convolution,MaxPooling,flatten,=max,Eachfigurecorrespondstoaneuron,Findanimagemaximizingtheoutputofneuron:,Convolution,MaxPooling,input,Convolution,MaxPooling,flatten,WhatdoesCNNlearn?,=max,Canweseedigits?,0,1,2,3,4,5,6,7,8,DeepNeuralNetworksareEasilyFooled,WhatdoesCNNlearn?,0,1,2,3,4,5,6,7,8,0,1,2,3,4,5,6,7,8,=max,=max+,Overallpixelvalues,DeepDream,Givenaphoto,machineaddswhatitsees,CNN,,Modifyimage,CNNexaggerateswhatitsees,DeepDream,Givenaphoto,machineaddswhatitsees,DeepStyle,Givenaphoto,makeitsstylelikefamouspaintings,DeepStyle,Givenaphoto,makeitsstylelikefamouspaintings,DeepStyle,CNN,CNN,content,style,CNN,?,ANeuralAlgorithmofArtisticStyle/abs/1508.06576,MoreApplication:PlayingGo,Network,19x19vector,Black:1,white:-1,none:0,19x19vector,Fully-connectedfeedforwardnetworkcanbeused,ButCNNperformsmuchbetter.,19x19matrix(image),MoreApplication:PlayingGo,CNN,CNN,recordofpreviousplays,Target:“天元”=1else=0,Target:“五之5”=1else=0,Training:,WhyCNNforplayingGo?,SomepatternsaremuchsmallerthanthewholeimageThesamepatternsappearindifferentregions.,AlphaGouses5x5forfirstlayer,WhyCNNforplayingGo?,Subsamplingthepixelswillnotchangetheobject,AlphaGodoesnotuseMaxPooling,MaxPooling,Howtoexplainthis?,MoreApplication:Speech,Time,Frequency,Spectrogram,CNN,Image,Thefiltersmoveinthefrequencydirection.,MoreApplication:Text,Sourceofimage:/viewdoc/download?doi=03.6858&rep=rep1&type=pdf,Tolearnmore,Themethodsofvisualizationintheseslideshttps:/blog.keras.io/how-convolutional-neural-networks-see-the-world.h
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 常见急救技术-吸痰术理论考试试题及答案
- 足疗推拿治疗常见足部疼痛试题及答案
- 2025年新能源汽车废旧电池回收利用产业技术创新与政策法规研究报告
- 2025年社区团购市场用户留存策略与区域市场分析报告
- 2025年影视工业化制作流程改革与质量标准研究报告
- 2025至2030年中国拉弦乐器行业发展前景预测及投资战略规划研究报告
- 2025至2030年中国半轴套管行业市场发展监测及投资战略规划报告
- 解析卷-人教版8年级数学下册《平行四边形》定向攻克试题(含答案解析)
- 考点攻克自考专业(小学教育)试题(名校卷)附答案
- 2025版外墙保温涂料分包工程合同规范
- 新人教版七年级上册英语全册课件(2024年新版教材)
- 2024-2030年中国纳米烧结银市场深度调查与发展战略规划分析研究报告
- WS 329-2024 麻醉记录单标准
- 不交养老保险劳务合同范本
- JT-T-1223-2018落水人员主动报警定位终端技术要求
- 初中语文现代文阅读训练及答案二十篇
- 2024封窗高空作业免责协议书范本
- 我的收藏(共10篇)
- 国家质量监测四年级学生数学考试试题
- 青斑血管炎的护理查房
- 2024年河南省成考(专升本)生理学护理学专业考试真题含解析
评论
0/150
提交评论