台大-李宏毅-B站机器学习视频-课件神经网络与深度学习CNN_第1页
台大-李宏毅-B站机器学习视频-课件神经网络与深度学习CNN_第2页
台大-李宏毅-B站机器学习视频-课件神经网络与深度学习CNN_第3页
台大-李宏毅-B站机器学习视频-课件神经网络与深度学习CNN_第4页
台大-李宏毅-B站机器学习视频-课件神经网络与深度学习CNN_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

ConvolutionalNeuralNetwork,WhyCNNforImage?,Canthenetworkbesimplifiedbyconsideringthepropertiesofimages?,Themostbasicclassifiers,Use1stlayerasmoduletobuildclassifiers,Use2ndlayerasmodule,Zeiler,M.D.,ECCV2014,Representedaspixels,WhyCNNforImage,Somepatternsaremuchsmallerthanthewholeimage,Aneurondoesnothavetoseethewholeimagetodiscoverthepattern.,“beak”detector,Connectingtosmallregionwithlessparameters,WhyCNNforImage,Thesamepatternsappearindifferentregions.,“upper-leftbeak”detector,“middlebeak”detector,Theycanusethesamesetofparameters.,Doalmostthesamething,WhyCNNforImage,Subsamplingthepixelswillnotchangetheobject,subsampling,bird,bird,Wecansubsamplethepixelstomakeimagesmaller,Lessparametersforthenetworktoprocesstheimage,ThewholeCNN,FullyConnectedFeedforwardnetwork,catdog,Convolution,MaxPooling,Convolution,MaxPooling,Flatten,Canrepeatmanytimes,ThewholeCNN,Convolution,MaxPooling,Convolution,MaxPooling,Flatten,Canrepeatmanytimes,Somepatternsaremuchsmallerthanthewholeimage,Thesamepatternsappearindifferentregions.,Subsamplingthepixelswillnotchangetheobject,Property1,Property2,Property3,ThewholeCNN,FullyConnectedFeedforwardnetwork,catdog,Convolution,MaxPooling,Convolution,MaxPooling,Flatten,Canrepeatmanytimes,CNNConvolution,6x6image,Filter1,Filter2,Thosearethenetworkparameterstobelearned.,Matrix,Matrix,Eachfilterdetectsasmallpattern(3x3).,Property1,CNNConvolution,6x6image,Filter1,3,-1,stride=1,CNNConvolution,6x6image,Filter1,3,-3,Ifstride=2,Wesetstride=1below,CNNConvolution,6x6image,Filter1,3,-1,-3,-1,-3,1,0,-3,-3,-3,0,1,3,-2,-2,-1,stride=1,Property2,CNNConvolution,6x6image,3,-1,-3,-1,-3,1,0,-3,-3,-3,0,1,3,-2,-2,-1,Filter2,-1,-1,-1,-1,-1,-1,-2,1,-1,-1,-2,1,-1,0,-4,3,Dothesameprocessforeveryfilter,stride=1,4x4image,FeatureMap,CNNColorfulimage,Filter1,Filter2,Colorfulimage,image,convolution,Convolutionv.s.FullyConnected,Fully-connected,6x6image,Filter1,1:,2:,3:,7:,8:,9:,13:,14:,15:,Onlyconnectto9input,notfullyconnected,4:,10:,16:,1,0,0,0,0,1,0,0,0,0,1,1,3,Lessparameters!,Filter1,1:,2:,3:,7:,8:,9:,13:,14:,15:,4:,10:,16:,1,0,0,0,0,1,0,0,0,0,1,1,3,-1,Sharedweights,6x6image,Lessparameters!,Evenlessparameters!,ThewholeCNN,FullyConnectedFeedforwardnetwork,catdog,Convolution,MaxPooling,Convolution,MaxPooling,Flatten,Canrepeatmanytimes,CNNMaxPooling,3,-1,-3,-1,-3,1,0,-3,-3,-3,0,1,3,-2,-2,-1,Filter2,-1,-1,-1,-1,-1,-1,-2,1,-1,-1,-2,1,-1,0,-4,3,Filter1,CNNMaxPooling,6x6image,3,0,1,3,-1,1,3,0,2x2image,Eachfilterisachannel,Newimagebutsmaller,Conv,MaxPooling,ThewholeCNN,Convolution,MaxPooling,Convolution,MaxPooling,Canrepeatmanytimes,Anewimage,Thenumberofthechannelisthenumberoffilters,Smallerthantheoriginalimage,ThewholeCNN,FullyConnectedFeedforwardnetwork,catdog,Convolution,MaxPooling,Convolution,MaxPooling,Flatten,Anewimage,Anewimage,Flatten,Flatten,3,0,1,3,-1,1,0,3,FullyConnectedFeedforwardnetwork,Onlymodifiedthenetworkstructureandinputformat(vector-3-Dtensor),CNNinKeras,Convolution,MaxPooling,Convolution,MaxPooling,input,Thereare253x3filters.,Input_shape=(1,28,28),1:black/weight,3:RGB,28x28pixels,3,-1,-3,1,3,Onlymodifiedthenetworkstructureandinputformat(vector-3-Dtensor),CNNinKeras,Convolution,MaxPooling,Convolution,MaxPooling,input,1x28x28,25x26x26,25x13x13,50 x11x11,50 x5x5,Howmanyparametersforeachfilter?,Howmanyparametersforeachfilter?,9,225,Onlymodifiedthenetworkstructureandinputformat(vector-3-Dtensor),CNNinKeras,Convolution,MaxPooling,Convolution,MaxPooling,input,1x28x28,25x26x26,25x13x13,50 x11x11,50 x5x5,Flatten,1250,FullyConnectedFeedforwardnetwork,output,LiveDemo,Convolution,MaxPooling,Convolution,MaxPooling,input,253x3filters,503x3filters,WhatdoesCNNlearn?,50 x11x11,Theoutputofthek-thfilterisa11x11matrix.,Degreeoftheactivationofthek-thfilter:,=111=111,11,11,x,=max,(gradientascent),Convolution,MaxPooling,Convolution,MaxPooling,input,253x3filters,503x3filters,WhatdoesCNNlearn?,50 x11x11,Theoutputofthek-thfilterisa11x11matrix.,Degreeoftheactivationofthek-thfilter:,=111=111,=max,(gradientascent),Foreachfilter,WhatdoesCNNlearn?,Convolution,MaxPooling,input,Convolution,MaxPooling,flatten,=max,Eachfigurecorrespondstoaneuron,Findanimagemaximizingtheoutputofneuron:,Convolution,MaxPooling,input,Convolution,MaxPooling,flatten,WhatdoesCNNlearn?,=max,Canweseedigits?,0,1,2,3,4,5,6,7,8,DeepNeuralNetworksareEasilyFooled,WhatdoesCNNlearn?,0,1,2,3,4,5,6,7,8,0,1,2,3,4,5,6,7,8,=max,=max+,Overallpixelvalues,DeepDream,Givenaphoto,machineaddswhatitsees,CNN,,Modifyimage,CNNexaggerateswhatitsees,DeepDream,Givenaphoto,machineaddswhatitsees,DeepStyle,Givenaphoto,makeitsstylelikefamouspaintings,DeepStyle,Givenaphoto,makeitsstylelikefamouspaintings,DeepStyle,CNN,CNN,content,style,CNN,?,ANeuralAlgorithmofArtisticStyle/abs/1508.06576,MoreApplication:PlayingGo,Network,19x19vector,Black:1,white:-1,none:0,19x19vector,Fully-connectedfeedforwardnetworkcanbeused,ButCNNperformsmuchbetter.,19x19matrix(image),MoreApplication:PlayingGo,CNN,CNN,recordofpreviousplays,Target:“天元”=1else=0,Target:“五之5”=1else=0,Training:,WhyCNNforplayingGo?,SomepatternsaremuchsmallerthanthewholeimageThesamepatternsappearindifferentregions.,AlphaGouses5x5forfirstlayer,WhyCNNforplayingGo?,Subsamplingthepixelswillnotchangetheobject,AlphaGodoesnotuseMaxPooling,MaxPooling,Howtoexplainthis?,MoreApplication:Speech,Time,Frequency,Spectrogram,CNN,Image,Thefiltersmoveinthefrequencydirection.,MoreApplication:Text,Sourceofimage:/viewdoc/download?doi=03.6858&rep=rep1&type=pdf,Tolearnmore,Themethodsofvisualizationintheseslideshttps:/blog.keras.io/how-convolutional-neural-networks-see-the-world.h

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论