《函数的单调性与导数》课件(新人教A版选修22)_第1页
《函数的单调性与导数》课件(新人教A版选修22)_第2页
《函数的单调性与导数》课件(新人教A版选修22)_第3页
《函数的单调性与导数》课件(新人教A版选修22)_第4页
《函数的单调性与导数》课件(新人教A版选修22)_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

单调性的概念,对于给定区间上的函数f(x):1.如果对于这个区间上的任意两个自变量x1,x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在这个区间上是增函数.,2.如果对于这个区间上的任意两个自变量x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数,在(,0)和(0,)上是减函数。但在定义域上不是减函数。,在(,1)上是减函数,在(1,)上是增函数。,在(,)上是增函数,概念回顾,画出下列函数的图像,并根据图像指出每个函数的单调性,(1)函数的单调性是对某个区间而言的,它是个局部概念。这个区间是定义域的子集。,(2)单调区间:针对自变量x而言的。若函数在此区间上是增函数,则为单调递增区间;若函数在此区间上是减函数,则为单调递减区间。,以前,我们用定义来判断函数的单调性.在假设x1x2的前提下,比较f(x1)0,f(x1)0,f(x)在x1附近,f(x)在x0附近,例1已知导函数的下列信息:,当1x4,或x1时,当x=4,或x=1时,试画出函数的图象的大致形状.,解:,当1x4,或x1时,可知在此区间内单调递减;,当x=4,或x=1时,综上,函数图象的大致形状如右图所示.,课堂练习,判断下列函数的单调性,并求出单调区间:,练习2,函数y=f(x)的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论