




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.2排列排列的简单应用,一、【概念复习】1排列的定义,理解排列定义需要注意的几点问题;从n个不同元素中,任取m(mn)个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.2排列数的定义,排列数的计算公式,EX17位同学站成一排,共有多少种不同的排法?,解:问题可以看作:7个元素的全排列A775040,7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?,解:问题可以看作:余下的6个元素的全排列A66=720,7位同学站成一排,其中甲不站在首位,共有多少种不同的排法?,解一:甲站其余六个位置之一有A61种,其余6人全排列有A66种,共有A61A66=4320。,解二:从其他6人中先选出一人站首位,有A61,剩下6人(含甲)全排列,有A66,共有A61A66=4320。,解三:7人全排列有A77,甲在首位的有A66,所以共有A77-A66=7A66-A66=4320。,解题示范现有7位同学站成一排甲、乙只能站在两端的排法共有多少种?,解:根据分步计数原理:第一步甲、乙站在两端有A22种;第二步余下的5名同学进行全排列有A55种则共有A22A55=240种排列方法.,A55,A55,A22,A22,甲、乙不能站在排头和排尾的排法共有多少种?,解法一:第一步从(除去甲、乙)其余的5位同学中选2位同学站在排头和排尾有A52种方法;第二步从余下的5位同学中选5位进行排列(全排列)有A55种方法,所以一共有A52A552400种排列方法,解法二:若甲站在排头有A66种方法;若乙站在排尾有A66种方法;若甲站在排头且乙站在排尾则有A55种方法.所以甲不能站在排头,乙不能排在排尾的排法共有A772A66A55=2400种,归结(1):对于“在”与“不在”等有特殊元素或特殊位置的排列问题,通常是先排特殊元素或特殊位置,称为优先处理特殊元素(位置)法(优限法)。,优限法,甲、乙两同学必须相邻的排法共有多少种?解:先将甲、乙两位同学“捆绑”在一起看成一个元素与其余的5个元素(同学)一起进行全排列有A66种方法;再将甲、乙两个同学“松绑”进行排列有A22种方法所以这样的排法一共有A66A221440种拓展:甲、乙和丙三个同学都相邻的排法共有多少种?解:方法同上,一共有A55A33720种,解法一:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的5个元素中选取2个元素放在排头和排尾,有A52种方法;将剩下的4个元素进行全排列有A44种方法;最后将甲、乙两个同学“松绑”进行排列有A22种方法.则这样的排法一共有A52A44A22960种方法,甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?,解法二:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,若丙站在排头或排尾有2A55种方法,所以丙不能站在排头和排尾的排法有(A66-2A55)A22=960种方法,归结2:对于相邻问题,常用“捆绑法”(先捆后松).,解法三:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的四个位置选择共有A41种方法,再将其余的5个元素进行全排列共有A55种方法,最后将甲、乙两同学“松绑”,所以这样的排法一共有A41A55A22960种方法,捆绑法,甲、乙两同学不能相邻的排法共有多少种?解法一:(排除法)A77-A66A22=3600解法二:(插空法)先将其余五个同学排好有A55种方法,此时他们留下六个位置(就称为“空”),再将甲、乙同学分别插入这六个位置(空)有A62种方法.,则共有A55A62=3600种方法,乙,甲,拓展:甲、乙和丙三个同学都不能相邻的排法共有多少种?解:先将其余四个同学排好有A44种方法,此时他们留下五个“空”,再将甲、乙和丙三个同学分别插入这五个“空”有A53种方法,所以一共有A44A531440种归结(3):对于不相邻问题,常用“插空法”(特殊元素后考虑),插空法,强化练习:三名女生和五名男生站成一排,如果女生全排在一起,有多少种不同排法?如果女生全分开,有多少种不同排法?如果两端都不能排女生,有多少种不同排法?如果两端不能都排女生,有多少种不同排法?,A66A33=4320,A55A63=14400,A52A66=14400,A52A66+2A31A51A66=36000或A88-A32A66=36000,某些元素不能在或必须排列在某一位置;某些元素要求连排(即必须相邻);某些元素要求分离(即不能相邻);,某些元素要求必须相邻时,可以先将这些元素看作一个元素,与其他元素排列后,再考虑相邻元素的内部排列,这种方法称为“捆绑法”;,某些元素不相邻排列时,可以先排其他元素,再将这些不相邻元素插入空挡
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 地下车位买卖合同-买卖合同3篇
- 甘肃造价咨询方案
- 2025年跨境电商综合物流服务协议
- 2025年版网络安全评估与技术服务合同
- 2025安全生产合同管理制度
- 2025年版事业单位专业劳务派遣合作协议版B版
- 物流公园咨询方案
- 纳税筹划方案咨询
- 模具加工合同范本3篇
- 中国邮政2025沈阳市秋招数据分析岗位面试模拟题及答案
- 心房颤动患者心脏康复中国专家共识
- 嵌入式软件架构的模块化设计研究
- 海绵城市施工方案
- 智能计算系统:从深度学习到大模型 第2版课件 第四章-编程框架使用
- 供应链管理师二级练习卷含答案
- 《公路边坡网锚喷植被混凝土生态防护技术指南》
- 主要负责人安全生产责任制模版(三篇)
- 2023部编新人教版五年级(上册)道德与法治全册教案
- 竞选竞选大学心理委员参考课件
- 2024年数控车工技能竞赛理论考试题库500题(含答案)
- 2024年秋季新统编版七年级上册道德与法治全册教案
评论
0/150
提交评论