2020届高考数学第一轮复习测试题15 理_第1页
2020届高考数学第一轮复习测试题15 理_第2页
2020届高考数学第一轮复习测试题15 理_第3页
2020届高考数学第一轮复习测试题15 理_第4页
2020届高考数学第一轮复习测试题15 理_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

a级基本相容性练习(小时:40分满分:60分)一、选择题(每个问题5分,共25分)1.(2020四川)“x=3”是“x2=9”的()。A.充分的不必要的条件B.必要的和不足的条件C.先决条件D.不适当或不必要的条件解析X=3时,必须有x2=9,反之亦然。因此,“x=3”是“x2=9”的充分且不必要的条件。答案a2.(2020辽宁省)已知命题p:nn,2n 1,000的情况下,唵是()。A.n-n,2n-1 000 b . n-n,2n 1 000C.nn,2n1,000d . nn,2n ”就是“sin sin ”的()。A.完全不必要的条件b .必要的不完全条件C.先决条件d .充分或不必要的条件分析(特殊情况)如果 等于=390,=60,则sin390=sin30=sin60= sin 不成立。Sin sin 是=60,=390满足常识时 是不恰当或不必要的条件,称为sin sin 。回答d这个问题采用了特例法。所谓特例法,就是用特殊值(特殊图形,特殊位置)代替问题,得出特殊结论,对每个选项进行检查,做出正确的判断。特例法的理论基础是命题的一般结论为真的特殊条件是其特殊情况为真。也就是说,一般性存在于特殊性之中。普遍的特例包括使用特殊数字、特殊数列、特殊函数、特殊图、特殊角度、特殊位置等的特殊例子。这种方法实际上是解决部分选择的“小问题解决策略”5.(2020山东)如果a,b,cr,命题“a b c=3”,则a2 B2 C23”的否命题为()。A.如果a b c 3,则为a2 B2 C2 3B.如果a b c=3,则a2 B2 C2 3C.如果a b c 3,则为a2 B2 C2 3D.如果a2 B2 C2 3,则a b c=3分析A b c=3的否定是a b c 3,a2 B2 C2 3的否定是a2 B2 C2 b,则a2 B2”的逆否命题;(3)“如果x3,则x2 x-6 0”的否命题。这里真正的命题数目是_ _ _ _ _ _ _ _ _(填写序列号)。分析(1)真,(2)原命题假,所以逆否命题也是假,(3)如果轻易判断原命题的逆命题假,则原命题的否命题是假。回答18.(2020壮士研究)定义:如果域d中的实数x具有f(x)=0,则函数f(x)称为d中的零函数。根据上面的定义,f(x)是d的零函数,或g(x)是d的零函数 f(x)和g(x)的乘积函数是d的零函数的_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _分析设置d=(-1,1),f (x)=G(x)=显然,f(x)=f (x) g (x)是域d的0函数,但f(x)和G(x)不是d的0函数。答案完全没有必要三、解决问题(共23分)9.(11分钟)已知函数f(x)为(-,)的增量函数,a,br,命题的“a b为0时,f(a)f(b)(1)写那个逆命题,判断它的真假,证明你的结论;(2)写那个逆否命题,判断它的真价,证明你的结论。解(1)逆命题如下:如果f(a)f(b)/f(-a)f(-b)、A b 0是真正的命题。用反证法证明:假设a b 0,则a -b,b -af (x)是(-,)的增量函数。F (a) f (-b),f (b) f (-a),f(a)f(b)f(-a)f(-b)与主题相反,因此逆命题是真的。(2)逆否命题:如果f (a) f (b) f (-a) f (-b),A b 0是真正的命题。原命题是它的逆否命题,所以用真命题证明原命题就可以了。a b 0,ab,b af(x)是(-,)的附加函数。-f(a)-f(-b)、f(b)-f(-a)、f(a)f(b)f(-a)f(-b)。所以逆向否命题是真的。10.(12分钟)如果ab0,则a3 B3 a b-a2-B2=0的必备条件为a b=1。需要证明:a3 B3 a b-a2-B2=0,a b) (a2-a b B2)-(a2-a b B2)=0,(a b-1) (a2-a b B2)=0和ab0,a2-a b B2=(a-b)20,因此,a b-1=0,即a b=1。适当性:a b=1,即a b-1=0,;(a B- 1)(a2-a b B2)=0。即a3 B3 a b-a2-B2=0。b级综合创新选项(时间:30分钟满分:40分钟)一、选择题(每个问题5分,共10分)1.(2020湖北)实数a,b满足a0,b0,ab=0时,a和b是互补的。如果记忆(a,b)=-a-b,则(a,b)=0将对a和b进行互补()。A.必要和不充分的条件b .充分和不必要的条件C.先决条件d .充分或不必要的条件解释是适当的,(a,b)=0,即=a b,两边的ab=0的平方。如果a0,b0,ab=0,则a=0. (a,b)=-a-b=-b=0。因此成为必需的。C.回答c2.(2020浙江)如果a,b是实数,则“0 ab 1”是“a 的()”。A.充分的不必要的条件B.必要的和不足的条件C.充分必要的条件D.充分或不必要的条件0 ab 为0时b 0,a 0时b 有效,因此“0 ab 1”是a 的充分条件。相反,如果a=-1,b=2,则结论“a 为真,但条件0 ab 1不为真,因此“0 ab 1”不是“a 的必备条件”。因此,“0 ab 1”是“a 的充分且不必要的条件。答案a二、填写空白问题(每个问题4分,共8分)3.(2020安徽)在平面直角座标系统中,如果x和y均为整数,则点(x,y)称为总点。以下命题中正确的是_ _ _ _ _ _ _ _ _ _ _ _ _(写所有正确的命题编号)。这条直线不平行于坐标轴,也不经过任何点。如果k和b都是不合理的数字,那么线y=kx b不通过任何整数。只有当直线l通过无限的整点,l通过两个不同的整点时;直线y=kx b通过了k和b都是有理数的无穷大的整点。有正好通过一点的直线。解释如果x,y是整数,那么x y也是整数。因此,直线x y=不平行于坐标轴,也不通过整个点。也就是说是正确的。错误,因为直线y=x-正(1,0)。如果线l通过无限的整点,则必须通过两个不同的整点。相反,如果直线l通过两个不同的全点M(m1,n1)、N(m2,N2),则m1、m2、n1、N2都是整数。在m1=m2或n1=N2中,直线l的方程式为x=m1或y=n1,它会通过无限长的整个点。在m1m2和n1n2中,线l的方程式为y-n1=(x-m1)、直线l通过点(k 1) m1-km2,(k 1) n1-kn2)。其中,kz。这些点都是整数,是无限的。也就是说,线l总是通过无限多个点,所以正确。当x,y是整数时,因为y-x是整数,所以线y=x不经过整数点。也就是说,当k,b是有理数时,线l: y=kx b不能无限地保证很多整数点,所以出错。对于直线,y=x-正好通过一点(1,0),因此准确。答案 4.(2020年国家新课程改革)a和b被称为的角度单位向量,有四个命题P1:| a b | 1p2:| a b | 1P3:| a-b | 1P4:| a-b | 1其中,真命题的数量是_ _ _ _ _ _ _ _ _ _ _ _ _。| a |=1,| b |=1,| b |=1,因此ab -b=a2 2ab B2 1,即| a b | 2=a2 2ab B2| a-b | 1可以获得a2-2ab B2 1。| a |=1,| b |=1,因此ab ,不是回答2三、解决问题(共22分)5.(10分钟)判断命题“如果a0,则x2 x-a=0存在实根”的逆否命题的真与假。解法写相反的认知命题,然后判断真假。原命题:如果a0,则x2 x-a=0具有实际根。逆否命题:x2 x-a=0没有实际根,则a 0。判断如下:x2 x-a=0没有实际根,=1 4a 0,a -0,x2 x-a=0没有真根,a 0,方程式x2 x-a=0的判别=4a 1 0,方程x2 x-a=0具有实际根,因此,原命题“a0的话,x2 x-a=0有实际根”是真的。和/原命题等同于逆否命题,如果a 0,则x2 x-a=0有实根”的逆否命题是真命题。法3使用先决条件和集合关系进行判断。命题p: a 0,q: x2 x-a=0有真根,p:a= ar | a0 ,q:b= ar |方程式x2 x-a=0存在实际根=。如果Ab,p,则q

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论