用配方法解一元二次方程_第1页
用配方法解一元二次方程_第2页
用配方法解一元二次方程_第3页
用配方法解一元二次方程_第4页
用配方法解一元二次方程_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一元二次方程,用配方法解一元二次方程,八、三五组制作,Page2,解方程一元二次方程x2-9=0解:x2-9=0将常数项-9移到方程的右边,可以得到x2=9根据平方根的意义,x是9的平方根,而9的平方根是3和-3,因此x=这时我们说说方程x2-9=0两个根x1=3,x2=-3,x2=9可以直接开平方,这样的方程有什么特点呢?,4x2-7=0,(x-2)2=9又该怎样解呢?这两个方程与x2=9有什么相同之处呢,如果一元二次方程的一边是一个含有未知数的一次式的完全平方式,而另一边是一个非负数,那么就可以根据平方根的意义,通过开方求出这个方程的根。,例:x2+6x+9=25解:原方程就是(x+3)2=25开平方,得x+3=所以x1=2,x2=-8,那我们该如何类似于x2+12x-15=0这种本身无法化成一个一边含有未知数的一次式的完全平方式的二元一次方程该怎样解呢?我们可以把方程左右两边同时加上51,构造一个完全平方式,x2+12x+36=51,即(x+6)2=51.两边开平方,得x+6=因此,方程x2+12x-15=0有两个根x1=,x2=,注意:两个根都是原方程的解,在这里,针对这些本身无法化成一个一边含有未知数的一次式的完全平方式的二元一次方程,我们的思路是将方程转化成(x+m)2=n的形式,当n0时,两边开平方即可求出方程的根,八、三五组,Mak

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论