




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省温州市“十五校联合体”2020学年高一下学期期中考试数学试题考生须知:1本卷共4页满分120分,考试时间100分钟;2答题前,在答题卷指定区域填写班级、姓名、考场号、座位号及准考证号并填涂相应数字;3所有答案必须写在答题纸上,写在试卷上无效;4考试结束后,只需上交答题纸。选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。在每小题给出的四个选项中,只有一项符合题目要求。1.在三角形中,角成等差数列,则的大小为( )A. B. C. D. 【答案】B【解析】【分析】由题,三角形中,角成等差数列,可求得角B的值,即可求得 .【详解】因为在三角形中,角成等差数列,所以 可得 ,所以故选B【点睛】本题考查了等差数列的性质以及三角形,熟悉性质和内角和是解题的关键,属于基础题.2.在中,则的值为( )A. B. C. D. 【答案】A【解析】【分析】直接利用余弦定理求得答案即可.【详解】在中,由余弦定理可得:,因为,所以代入求得 故选A【点睛】本题考查了余弦定理,熟悉公式,属于基础题.3.在等比数列中,则公比的值为( )A. B. C. 或D. 或【答案】D【解析】【分析】由题,等比数列,易得,代入求解即可.【详解】因为等比数列中,即解得或故选D【点睛】本题考查了等比数列性质的运用,熟练其性质和通项是解题的关键,属于基础题.4.为了得到函数的图象,只需把的图象( )A. 向左平移B. 向右平移C. 向左平移D. 向右平移【答案】B【解析】试题分析:因为,所以的图象向右平移个单位后可得的图象,所以为了得到函数的图象,只需把的图象向右平移,故选B.考点:1、诱导公式的应用;2、三角函数图象的平移变换.5.若,则( )A. B. C. D. 【答案】D【解析】分析:由题意结合诱导公式和二倍角公式整理计算即可求得最终结果.详解:由题意可知:,结合二倍角公式有:.本题选择D选项.点睛:本题主要考查诱导公式的应用,二倍角公式等知识,意在考查学生的转化能力和计算求解能力.6.在一块顶角为,腰长为的等腰三角形废钢板中裁剪扇形,现有如图所示两种方案,则( ) A. 方案一中扇形的面积更大B. 方案二中扇形的面积更大C. 方案一中扇形的周长更长D. 方案二中扇形的周长更长【答案】C【解析】【分析】由题,分别求出方案一和方案二的面积与周长即可,比较可得答案.【详解】由题,顶角为,腰长为的等腰三角形,可得底角,高方案一,扇形是圆心角为,半径为2的扇形,所以面积 周长 方案二,扇形是圆心角为,半径为1的扇形,所以面积周长故选C【点睛】本题考查了扇形的面积和周长,熟悉扇形面积公式是解题的关键,属于较为基础题.7.已知数列是等比数列,数列是等差数列,若,则( )A. B. C. D. 【答案】A【解析】【分析】先由等差等比数列的性质求得和,再利用数列的中项公式代入求解即可.【详解】因为数列是等比数列,由等比数列性质可得 数列等差数列,由等差数列性质可得: 所以 所以故选A【点睛】本题考查了等差等比数列和三角函数求值的综合,熟悉数列的性质是解题的关键,属于中档题.8.设等差数列的前项和为,公差为,已知,下列结论正确的是( )A. B. C. D. 【答案】D【解析】分析】由题,利用等差数列求和公式,可得,然后可求得,即可得到答案.【详解】因为,所以 因为 故选D【点睛】本题考查了等差数列的性质和通项求和公式,熟悉通项公式和求和公式是解题的关键,属于中档题.9.在中角的对边分别为,且,则的形状为( )A. 等腰三角形B. 锐角三角形C. 直角三角形D. 钝角三角形【答案】C【解析】【分析】由题,利用余弦定理和正弦定理进行化简整理,可得角A、B的关系,最后可得三角形的形状.【详解】因为,由余弦定理: 化简可得:,由正弦定理可得: 化简整理可得: 因为在三角形中,所以 所以 所以为直角三角形故选C【点睛】本题考查了利用正余弦定理解三角形,合理运用正余弦定理是解题的关键,属于中档题.10.已知中,为的重心,则( )A. B. C. D. 【答案】A【解析】【分析】由题,先用余弦定理求得,再用向量表示出,然后代入用向量的数量积公式进行计算即可求得结果.【详解】因为中,为的重心,所以 ,由余弦定理可得: 且 所以=【点睛】本题主要考查了平面向量的数量积,利用向量的运算法则和基本定理表示出所求向量是解题的关键,易错点是弄清楚向量的夹角,属于较难题目.非选择题部分(共80分)二、填空题:本大题共6小题,多空题每题6分,单空题每题4分,共30分.11.在平面四边形中,则_;若,则_.【答案】 (1). 13 (2). 【解析】【分析】由题,先求得,即可求得,再由向量垂直可得数量积为0,求得m的取值.【详解】因为 ,所以 又因为,所以故答案为13和【点睛】本题考查了向量的坐标运算,解题的关键在于向量的运算和垂直的关系,属于基础题.12.已知等比数列的前项和,则_,的通项公式为_.【答案】 (1). (2). 【解析】【分析】由题,先求得,再利用等比中项,求得x的值,再求出公比q,可得通项公式.【详解】因为等比数列的前n项和,所以 由等比中项可得: 解得或(舍)此时 ,即公比 所以 故答案为和【点睛】本题考查了等比数列的通项和性质,熟悉公式和运用是解题的关键,属于较为基础题.13.已知角的终边过点,则_,_.【答案】 (1). (2). 【解析】【分析】由题,根据三角函数定义直接求得值,再利用诱导公式对原式进行化简,再分子分母同除以,代入可得结果.【详解】因为角的终边过点,所以原式故答案为和【点睛】本题考查了三角函数的知识,熟悉定义和诱导公式化简是解题的关键,属于基础题.14.函数,其中()的部分图像如图所示,则函数的解析式是_.【答案】【解析】【分析】由图,直接得出A的值,再求得周期,运用周期公式,求得,再将顶点代入可得结果.【详解】由图易知, 因为周期 由图可知,图像过,将点代入,即 即 因为 ,所以所以故答案【点睛】本题考查了三角函数解析式的求法,熟悉三角函数图像和公式的运用是解题的关键,属于较为基础题.15.已知数列满足,记数列的前项之积为,则的值为_.【答案】2020【解析】【分析】由题,易求得的值,即可求得,再代入化简可得结果.【详解】由题,可得 所以故答案为2020【点睛】本题考查了数列的知识,根据递推数列求通项是解题的关键,属于较为基础题.16.在中,点为线段上一动点,若最小值为,则的面积为_.【答案】【解析】【分析】由题,设,由余弦定理可求得AB的长,再设,利用向量基本定理表示出,求得其数量积整理是关于n的二次函数,再求其最小值等于,可求得m的值,可求得面积.【详解】由题,设,在三角形ABC中,由余弦定理变形可得: 因为点为线段上一动点,再设,此时 即因为 所以令关于n二次函数所以其最小值为: 解得 所以 三角形ABC的面积: 故答案为【点睛】本题考查了解三角形和平面向量综合,熟悉正余弦定理和平面向量的基本定理,数量积公式是解题的关键,还有函数的最值,属于难题.三、解答题:本大题共4小题,共50分,解答应写出文字说明、证明过程或演算步骤。17.已知平面向量满足:(1)求与的夹角;(2)求向量在向量上的投影.【答案】(1); (2).【解析】【分析】(1)由题,先求得的大小,再根据数量积的公式,可得与的夹角;(2)先求得的模长,再直接利用向量几何意义的公式,求得结果即可.【详解】(1),又, (2),向量在向量上的投影为【点睛】本题考查了向量的知识,熟悉向量数量积的知识点和几何意义是解题的关键所在,属于中档题.18.在中,的面积为,点为的中点,(1)求的长;(2)求的值.【答案】(1); (2).【解析】【分析】(1)由题,先求得,再用面积公式求得,再用余弦定理可得AB的值;(2)先用向量的基本定理,可求得,在三角形ACD中,用面积公式,求得.【详解】(1)由得所以,由余弦定理:,所以(2) ,又,【点睛】本题考查了正余弦定理解三角形,合理的运用正余弦定理公式的变换和面积公式是解题的关键,属于较为基础题.19.已知函数(其中)图像的两条相邻对称轴之间的距离为(1)求的值及的单调减区间;(2)若求的值.【答案】(1) ; (2).【解析】【分析】(1)由降幂公式和辅助角公式化简,再利用周期可求得和单调区间;(2)由题,代入可求得的值,可求得的值,即可得出答案.【详解】(1)由题意:,T=,令,则 所以的单调减区间为(2),【点睛】本题考查了三角函数综合,熟悉三角恒等变化和图形性质的运用是解题的关键,注意观察角与角之间的关系是解题的关键,属于中档题.20.已知数列的前项和为,且满足,(1)求数列的通项公式;(2)若取出数列
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年事业单位工勤技能-河南-河南林木种苗工四级(中级工)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-河南-河南堤灌维护工一级(高级技师)历年参考题库典型考点含答案解析
- 2024版离婚协议的性质法律问题
- 2025年事业单位工勤技能-河北-河北汽车驾驶与维修员四级(中级工)历年参考题库含答案解析
- 2025年事业单位工勤技能-河北-河北房管员二级(技师)历年参考题库含答案解析
- 2025年事业单位工勤技能-江西-江西电工二级(技师)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-江西-江西城管监察员二级(技师)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-江苏-江苏管工(技师/高级技师)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-广西-广西保安员三级(高级工)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广东-广东计算机文字录入处理员三级(高级工)历年参考题库典型考点含答案解析
- 工程专项考核管理办法
- 电缆测试技术课件
- 政协大走访活动方案
- 个人养老金课件
- 2025至2030中国氧化钪行业需求状况及未来趋势前景研判报告
- udi追溯管理制度
- 新能源产业园区厂房物业管理及绿色能源应用合同
- 读书分享《教师的语言力》
- 2025年5月上海普通高中学业水平等级性考试物理试题及答案
- 医院医患沟通谈话记录范本
- 资金往来清账协议书
评论
0/150
提交评论