四川省峨眉山市2020届高三数学适应性考试试题 文(含解析)_第1页
四川省峨眉山市2020届高三数学适应性考试试题 文(含解析)_第2页
四川省峨眉山市2020届高三数学适应性考试试题 文(含解析)_第3页
四川省峨眉山市2020届高三数学适应性考试试题 文(含解析)_第4页
四川省峨眉山市2020届高三数学适应性考试试题 文(含解析)_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省峨眉山市2020届高三数学适应性考试试题 文(含解析)(考试时间:120分钟 试卷满分:150分)注意事项:1. 答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。2. 回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3. 考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,则( )A. B. C. D. 【答案】B【解析】【分析】化简集合B,根据交集运算求解即可.详解】由可得,所以,故选B.【点睛】本题主要考查了集合的交集运算,属于容易题.2.设,是虚数单位,则的虚部为( )A. 1B. -1C. 3D. -3【答案】D【解析】因为z=z的虚部为-3,选D.3.下表是降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对应数据,根据表中提供的数据,求出关于的线性回归方程为,则表中的值为( )34562544.5A. 3B. 3.5C. 4D. 4.5【答案】A【解析】【分析】根据表格中所给的数据,求出这组数据的横坐标和纵坐标的平均数,表示出这组数据的样本中心点,根据样本中心点在线性回归直线上,代入得到关于的方程,即可求解【详解】由题意,根据所给的表格可以求出:,又因为这组数据的样本中心点在线性回归直线上,即,解得,故选A【点睛】本题主要考查了回归直线方程的应用,其中解答中熟记回归直线方程的特征,把样本中心点代入回归直线方程是解答的关键,着重考查了运算与求解能力,属于基础题4.将函数的图象上所有的点向右平移个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得图象的解析式为( )A. B. C. D. 【答案】C【解析】右平移个单位长度得带,再把图像上各点的横坐标扩大到原来的2倍(纵坐标不变)得到,故选C.5.在等差数列中,是方程的两根,则数列的前11项和等于( )A. 66B. 132C. -66D. -132【答案】D【解析】【分析】由根与系数的关系可求出,再根据等差中项的性质得,利用等差数列的求和公式即可求解.【详解】因为,是方程的两根所以,又,所以,故选D.【点睛】本题主要考查了等差数列的性质,等差中项,数列的求和公式,属于中档题.6.设函数,若从区间上任取一个实数,则所选取的实数满足的概率为( )A. B. C. D. 【答案】C【解析】【分析】根据题设条件,求得不等式的解集,根据解集在数轴上的长度比的几何概型,即可求解【详解】由题意,函数,令,即,解得,根据长度比的几何概型可得概率为,故选C【点睛】本题主要考查了几何概型及其概率的计算,以及一元二次不等式的求解,其中解答中熟记一元二次不等式的解法,利用长度比的几何概型、准确求解是解答的关键,着重考查了运算与求解能力,属于基础题7.某几何体的三视图如图所示,图中的四边形都是边长为4的正方形,两条虚线互相垂直且相等,则该几何体的体积是( )A. B. C. D. 32【答案】B【解析】该几何体为一个正方体去掉一个倒四棱锥,其中正方体棱长为4,倒四棱锥顶点为正方体中心,底面为正方体上底面,因此体积是,选B.点睛: 1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图2三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据8.若,满足,则( )A. B. C. D. 【答案】A【解析】分析:先利用指数函数的单调性确定的取值范围,再通过对数函数的单调性确定的范围,进而比较三个数的大小详解:因为,所以,因为,所以,又,所以点睛:本题考查指数函数的单调性、对数函数的单调性等知识,意在考查学生的逻辑思维能力9.宋元时期数学名着算学启蒙中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个程序框图,若输入的,分别为5,2,则输出的( )A. 5B. 4C. 3D. 2【答案】B【解析】模拟程序运行,可得:,不满足条件,执行循环体,不满足条件,执行循环体,不满足条件,执行循环体,满足条件,退出循环,输出的值为故选10.已知抛物线的焦点是椭圆的一个焦点,且该抛物线的准线与椭圆相交于、两点,若是正三角形,则椭圆的离心率为( )A. B. C. D. 【答案】C【解析】由题知线段是椭圆的通径,线段与轴的交点是椭圆的下焦点,且椭圆的,又,由椭圆定义知,故选C.11.如图,在四棱锥中,平面,且,异面直线与所成角为,点,都在同一个球面上,则该球的表面积为( )A. B. C. D. 【答案】B【解析】由底面的几何特征易得,由题意可得:,由于ABOD,异面直线CD与AB所成角为30故CDO=30,则,设三棱锥O-BCD外接球半径为R,结合可得:,该球表面积为:.本题选择B选项.点睛:与球有关的组合体问题,一种是内切,一种是外接解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.12.已知函数,若是函数的唯一极值点,则实数的取值范围是( )A. B. C. D. 【答案】A【解析】由函数,可得,有唯一极值点有唯一根,无根,即与无交点,可得,由得,在上递增,由得,在上递减,即实数的取值范围是,故选A.【方法点睛】已知函数零点(方程根)的个数,求参数取值范围的三种常用的方法:(1)直接法,直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法,先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法,先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解一是转化为两个函数的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为的交点个数的图象的交点个数问题 .二、填空题:本题共4小题,每小题5分,共20分.13.已知向量,若,则_.【答案】9【解析】【分析】根据向量垂直可知向量的数量积等于零,利用数量积的坐标运算即可.【详解】因为所以,解得m=9,故填9.【点睛】本题主要考查了向量垂直,向量数量积计算,属于中档题.14.已知变量,满足,则的最小值为_.【答案】0【解析】【分析】画出可行域,分析目标函数得,当在y轴上截距最小时,即可求出的最小值.【详解】作出可行域如图: 联立 得化目标函数为,由图可知,当直线过点时,在y轴上的截距最小,有最小值为,故填.【点睛】本题主要考查了简单的线性规划,属于中档题.15.已知数列的前项和为,且,则数列的前6项和为_.【答案】【解析】由题意得,因为数列的前6项和为.16.过抛物线的焦点作直线,与抛物线交于、两点,与准线交于点,若,则_【答案】【解析】【分析】求出抛物线的焦点坐标和准线方程,根据,求得直线的方程,联立方程组,求得,再利用抛物线的定义和焦点弦的性质,即可求解【详解】根据抛物线的方程,可得焦点坐标,准线,过点作,垂直为,则,又由,所以,则,在直角中,因为,所以,即直线的斜率为,所以直线的方程为,设,联立方程组,整理得,所以,所以【点睛】本题主要以抛物线为载体,考查了直线与抛物线的弦长问题,其中解答中根据抛物线的定义求得直线的方程,联立方程组,再利用抛物线焦点弦的性质求解是解答的关键,着重考查了运算与求解能力,属于中档试题三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第1721题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.在中,角,所对的边分别为,.满足.(1)求角的大小;(2)若,的面积为,求的大小.【答案】(1)(2)【解析】【分析】(1)根据题意,由正弦定理和正余弦和差角公式进行化简,求得cosC的值,求出角C;(2)先用面积公式求得b的值,再用余弦定理求得边c.【详解】(1)在中,因为,所以由正弦定理可得:,所以,又中,所以.因为,所以.(2)由,得.由余弦定理得,所以.【点睛】本题考查了解三角形中的正余弦定理和面积公式,解题关键是在于公式的合理运用,属于基础题.18.某手机专卖店对某市市民进行手机认可度调查,在已购买手机的1000名市民中,随机抽取100名,按年龄(单位:岁)进行统计的频数分布表和频率分布直方图如下:分组(岁)频数53510合计100(1)求频数分布表中,的值,并补全频率分布直方图;(2)在抽取的这100名市民中,从年龄在、内的市民中用分层抽样的方法抽取5人参加手机宣传活动,现从这5人中随机选取2人各赠送一部手机,求这2人中恰有1人的年龄在内的概率.【答案】(1)见解析;(2)【解析】【分析】(1)由频数分布表和频率分布直方图,可得,解得,进而可求得年龄在内的人数对应的,即可补全频率分布直方图(2)由频数分布表,可得年龄在内的市民的人数为,记为,年龄在内的市民的人数为,分别记为,利用列举法求得基本事件的总数,以及事件 “恰有1人的年龄在内”所包含的基本事件的个数,利用古典概型及其概率的计算公式,即可求解【详解】(1)由频数分布表和频率分布直方图可知,解得.频率分布直方图中年龄在内的人数为人,对应的为,所以补全的频率分布直方图如下:(2)由频数分布表知,在抽取的5人中,年龄在内的市民的人数为,记为,年龄在内的市民的人数为,分别记为,.从这5人中任取2人的所有基本事件为:,共10种不同的取法.记“恰有1人的年龄在内”为事件,则所包含的基本事件有4个:,共有4种不同的取法,所以这2人中恰有1人的年龄在内的概率为.【点睛】本题主要考查了频率分布直方表和频率分布直方图的应用,以及古典概型及其概率额计算,其中解答中熟记频率分布直方图和频率分布直方图的性质,以及准确列举基本事件的总数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题19.如图,直三棱柱中,是的中点.(1)证明:平面;(2)若,求点到平面的距离.【答案】(1)证明见解析;(2).【解析】试题分析:(1)连接,设与的交点为,则为的中点,连接,又是的中点,由三角形中位线定理可得,从而根据线面平行的判定定理可得平面;(2)设点到平面的距离为,因为的中点在平面上,故到平面的距离也为,三棱锥的体积,的面积,由得结果.试题解析:(1)连接,设与的交点为,则为的中点,连接,又是的中点,所以.又平面,平面,所以平面.(2)由,是的中点,所以,在直三棱柱中,所以,又,所以,所以.设点到平面的距离为,因为的中点在平面上,故到平面的距离也为,三棱锥的体积,的面积,则,得,故点到平面的距离为.20.已知椭圆:过点和点.(1)求椭圆的方程;(2)设直线与椭圆相交于不同的两点,记线段的中点为,是否存在实数,使得?若存在,求出实数;若不存在,请说明理由.【答案】(1);(2)见解析【解析】【分析】(1)根据椭圆过点,代入即可求出,写出标准方程(2)假设存在,联立直线与椭圆方程,利用韦达定理可求弦MN中点,根据知,利用垂直直线斜率之间的关系可求出,结合直线与椭圆相交的条件,可知不存在.【详解】(1)椭圆:过点和点,所以,由,解得,所以椭圆:.(2)假设存在实数满足题设,由,得,因为直线与椭圆有两个交点,所以,即,设的中点为,分别为点,的横坐标,(韦达定理写出,给7分)则,从而,所以,因为,所以,所以,而,所以,即,与矛盾,因此,不存在这样的实数,使得.【点睛】本题主要考查了椭圆标准方程的求法,直线与椭圆的位置关系,涉及根与系数的关系,中点,垂直直线斜率的关系,属于中档题.21.已知.(1)求函数的极值;(2)设,对于任意,总有成立,求实数的取值范围.【答案】(1) 的极小值为:,极大值为: (2) 【解析】试题分析:(1)先求函数的定义域,然后对函数求导,利用导数求得函数的单调区间,进而求得极值.(2)由(1)得到函数的最大值为,则只需.求出函数的导数,对分成两类,讨论函数的单调区间和最小值,由此求得的取值范围.试题解析: (1)所以的极小值为:,极大值为:; (2) 由(1)可知当时,函数的最大值为对于任意,总有成立,等价于恒成立, 时,因为,所以,即在上单调递增,恒成立,符合题意. 当时,设,所以在上单调递增,且,则存在,使得所以在上单调递减,在上单调递增,又, 所以不恒成立,不合题意. 综合可知,所求实数的取值范围是.【点睛】本小题主要考查函数导数与极值,考查利用导数求解恒成立问题. 求极值的步骤: 先求的根(定义域内的或者定义域端点的根舍去); 分析两侧导数的符号:若左侧导数负右侧导数正,则为极小值点;若左侧导数正右侧导数负,则为极大值点.求函数的单调区间、极值、最值是统一的,极值是函数的拐点,也是单调区间的划分点,而求函数的最值是在求极值的基础上,通过判断函数的大致图像,从而得到最值,大前提是要考虑函数的定义域.(二)选考题:共10分,请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.已知曲线的参数方程为(为参数),直线的极坐标方程为,直线与曲线相交于,两点,以极点为原点,极轴为轴的非负半轴建立平面直角坐标系.(1)求曲线的极坐标方程;(2)记线段的中点为,求的值.【答案】(1);(2)【解析】【分析】(1)利用消去参数即可化为普通直角坐标方程,再根据化为极坐标方程(2)联立和,可得,利用极径的几何意义知,即可求解.【详解】(1)曲线的参数方程为(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论