




免费预览已结束,剩余7页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆邮电大学研究生堂下考试答卷 2015-2016学年第 2 学期考试科目计算机视觉姓 名学号 年 级专 业计算机科学与技术2016年 6 月 28 日欢迎下载关于图像增强技术的综述摘要:图像增强是指以满足特定应用需求为目的,突出图像中感兴趣区域信息,抑制或去除其他信息,针对不同的应用而异的图像分析识别预处理,其目标是变换原图像信息为更加适合人机辨识的系列方法。对图像质量的要求也随着多媒体技术和产品的不断发展和在各领域的广泛应用而不断提高。而通常图像在获取过程中受成像设备、场景动态范围、光照条件等因素影响,使得图像质量下降,甚至于影响后续的人机图像分析识别。为此,需要对图像进行动态范围调整、对比度增强、彩色图像增强处理及视觉感知一致性等方面的处理来获得高质量的图像。论文以具体应用目标要求为基准,通过对图像的视觉效果增强相关理论和技术方法的深入研究,分析其在实际应用中存在的问题和缺点,进一步提出相应的改进增强算法。主要包括对彩色图像本身的增强、基于图像域的多曝光图像融合增强以及基于频率域的多传感器图像融合增强。关键字:图像增强高动态范围成像多曝光融合 色调映射目录前言3第1章 图像增强的研究背景与意义3第2章 图像增强研究现状及存在的问题42.1空域增强42.2基于频域的增强52.3基于融合的增强52.4图像增强的评价方法62.5图像增强算法概述6参考文献7课程体会. .9前言现代人类对图像应用和质量提出了越来越高的要求,因此,与具体需求相适应的图像增强方法随之而产生。课题以图像增强的相关技术和具体应用需求为研究出发点和归宿,以算法在视觉感知和处理效率方面的改进为导向,将单一图像增强处理到多幅图像融合增强相关方法和应用需求有机地结合在一起。在这一章中,将分析和介绍与本课题图像增强研究密切相关的研究背景与意义、国内外此领域的研究现状、课题研究的基本内容,最后,指明论文的课题来源及整篇组织。图像已经广泛深入应用到人们生产、生活的方方面面,而人们对图像质量的要求也越来越高。而图像增强技术正顺应人们的需求,经过几十年的沉积,仍有许多尚待研究和解决的问题。本文将针对不同的具体应用,研究改善图像视觉质量和感知效果的几类图像增强相关算法和理论,提出了新的优化改进方法。第1章 图像增强的研究背景与意义在人类的五观感知信息中,由眼睛即视觉感知所带来的信息在人类信息获取中占据着非常重要的地位1。而图像正是人们在日常生活、科学研究、生产与消费领域最直接和最直观地可接触到的信息,图像的应用已经渗透到人类活动的各个领域。而为了达到人类对图像应用各领域特定需求的目的,又需要对原始捕获的图像作相应的处理,在一系列的数字化图像处理中,图像增强成为了整个图像处理中非常引人注目的一个研究点。图像增强作为图像处理的一个古老而重要的分支,在不断地应用需求变化面前,也在不断更新其研究目标和发展其增强处理方法技术。通常,由于场景本身所包含的动态范围、光照条件、图像捕获设备如数码相机的局限,以及摄影者本身的技术问题等多种因素影响,多数情况下,会使得拍摄的图像达不到人们预期的目标,如场景中的运动目标产生的运动模糊、由于曝光不恰当引起的场景细节损失或是弱小目标辨识不清等,都会对后期的图像前后景分割、目标识别、目标跟踪和最终的图像理解以及预测分析等带来困难。而图像增强本身的目标就是为了突出图像中感兴趣的区域、降低或去除不需要的图像信息,以此来加强和获取用户觉得有用的信息,进而得到更加适合于人/机器对图像进行理解和分析处理的表现形式或是富含更多细节信息的图像的相应处理方法1。由于各行各业都拥有各自特有类型的图像也使得图像增强处理方法有其共性也有其特殊性。如用数码相机采集的图像,通过增强单幅彩色图像,可以有效减少由于光照不均、实际场景在成像过程中的动态范围压缩不恰当所造成的细节损失、彩色失真等造成的图像退化问题。而通过连续多次曝光同一场景获取图像序列,通过图像融合处理可以弥补单一曝光度图像所不能捕获的动态信息,最终形成一幅具有更丰富细节的增强图像。在医学领域,MRI、CT 等成像技术的大量使用,使得人们对脑部、胸部、肺部等内脏器官及其他人体机构中病变的检测和定位提供了更精准的信息。而在军事和其他公共安防监控中,可通过红外成像提取出感兴趣的目标,同时借助可见光成像来对提取的目标环境进行准确定位。在智能交通中,随着天气愈加恶劣,雾霾、沙尘暴,以及受夜间光照影响等,使得监控成像后需要对图像进行增强,以增进对车辆、行人、车牌号及道路标识等进行更好的识别。而在卫星遥感成像中,增强处理遥感图像可以加强对森林火灾防控、作物分布虫害防治以及金属矿产探测方面更好的应用等。通常从两个方面实现图像增强,一是对比度拉伸处理,二细节保持与再现2。将在非良好照明条件下获取到的视觉效果较差的低对比度图像,通过图像灰度变换,调整其对比度,可实现原图像的对比度增强。为了使得图像中感兴趣的信息或是有用的信息变得更加突显,而这些细节信息通常被遮盖或剪除,此时通过相应的变换,必然达到增强图像细节的目标3。而在实际应用中,通常会需要对退化图像进行对比度和细节两方面的增强处理,以达到最终的图像增强效果。图像增强的结果通常具有主观性,大多靠经验性累积方法,对实际应用中的图像进行交互处理以达到增强的目的,这也为图像增强量化标准带来困难。由于图像增强处理在许多实际应用领域中都非常必要,因此,其研究始终处于图像处理的前沿。第2章 图像增强研究现状及存在的问题图像增强技术按其变换处理所在的作用域不同而被分为空域方法和频域方法两大类。而由于具体的应用目的不同,其图像实际增强处理所用到的方法和增强的内容有一定的差异,但图像增强处理的各目标和方法并不互相排斥,某些应用中需要同时联合几种方法来实现最好的增强效果。2.1空域增强空域增强通常包含图像灰度级变换、图像直方变换、直方均衡以及使用模糊逻辑和基于优化的增强算法,如使用遗传算法和细菌觅食等算法进行优化处理以达到图像增强的目的。空域图像增强方法的一般定义1,2-3如下公式1: (1)其中,f ( x,y)为输入的待增强的图像 g ( x,y)为处理后的增强图像,T 为空间域变换函数,表示对原图像f( x,y)在像素空间所进行的各种变换操作。当T 操作定义在单个像素点( x ,y)上时,称该操作为点操作;而空间滤波指T 操作作用于像素点( x ,y)的邻域上时的相应处理。2.2基于频域的增强基于频域的图像增强算法基础为卷积理论,该方法把图像视为波,然后再利用信号处理手段来处理图像。其通用的数学表示1如下公式2所示: (2)g( x,y)为增强后的图像,F( x,y)为原图像的傅立叶变换,H( x,y)为滤波变换函数,通过大量的实验研究,发现增强处理后的图像具有比原图像更加清晰的细节。常用的滤波方法有低通、高通、带阻及同态滤波等。频域图像增强方法从本质上讲是一种间接对图像进行变换处理的方法。其最早的变换理论,由傅立叶的热分析理论指出的周期函数表达可由不同频率和不同倍乘系数表达的正/余弦和形式表征1。随着图像处理应用不断发展,频率域变换方法近年来发展了在小波变换基础上发展起来的具有更高精度以及更的稀疏表达特性,更加适合于表达图像的边缘轮廓信息的 Curvelet 和Contourl- et 变换。这些超小波变换都是基于变换域的新型的多尺度分析方法,在图像对比度增强、降噪、图像融合与分割等方面得到了广泛地应用4-8。2.3基于融合的增强上述方法主要从图像自身的处理来完成单一图像的增强,但对于原始图像本身蕴含信息量不够,特别是由于光照、曝光度等原因造成的部分区域信息损失时,单靠唯一一幅原始图像本身不足以实现整幅图像增强4,10。近年来,许多学者对融合多图像增强提出了许多新的方法和思路。主要可以分为:基于多传感器图像融合增强10-14,如Stathaki分析总结了图像融合的相关算法及应用领域10。Shah 等提出四种红外图像与可见光图像融合以增强图像背景信息的方法12。其中基于直接图像域的权值调整方法取得了较明显的增强效果,但在总体细节有模糊化痕迹,且其强烈依赖于图像精确校准和场景完全静态的假设;而基于小波、Curvelet 变换以及 Contourlet 变换等频率域多尺度方法融合增强后细节保留得更好。Pohl 等分析了遥感图像中多传感器图像融合技术的相关概念、技术方法及其应用13。Li 等人提出一种基于区域的脉冲耦合神经网络图像融合方法14。2.4图像增强的评价方法 图像增强算法本身在不同的应用过程中,其增强的结果随着增强的目的不同而存在差异,因此,没有一个统一的增强算法能适合于所有类型的增强处理。同样,对于增强后的结果评价也因主观性和客观需求不同而有所侧重。图像增强评价方法总体可分为两大类:即主观评价和客观评价9。主观评价具有较强的经验性,从人眼视觉感知的角度进行评判,而对于人类视觉系统(Human Visual System,HVS)的精确模拟仍是困难的问题,因此,真正意义上的基于 HVS 的主观评价系统只能定性描述并未能起到实际定量量化评估的作用。2.5图像增强算法综述 随着成像技术和计算机技术的不断发展,数字图像已经成为人们日常生活中必不可少的组成部分,各种成像手段和设备大量用于数字娱乐、身份识别、智能交通、医疗病症检测、军事监管等。由于夜间光照不足、大雾、沙尘等影响,捕获图像中突发事件如相机运动、或是场景中目标运动等,都会使采集的图像或是图像序列遭受损失,存在成像模糊、噪声污染及曝光不均等问题,为此,图像增强显得尤为重要。 综合分析相关文献,图像增强技术可归为空域方法1-3和频域方法1。在第一章绪论中已完成对空域图像增强的具体总结分析,直接对像素值施用相应的操作以获得增强效果,如灰度变换、直方均衡、直方匹配等方法;而频域方法中,图像首先被转换到频率域,也就是说第一步先要进行傅立叶变换。频率增强方法中,所有的增强算子都是在进行傅立叶变换之后进行的,然后再进行傅立叶逆变换以得到增强后的图像。这些增强算子通常用于调整图像亮度、对比度或是灰度级分布,作为结果的输出图像的像素值根据所应用的变换函数得以改观。空域方法具有理论简单,算法复杂度低,可广泛应用于实时领域图像增强,缺点是缺少很强的自适应能力。而频域图像增强方法依赖于频域信息变换处理,其作用于相应的变换系数。这些频域的图像增强方法4-8,具有算法的复杂性较低,相应变换及特性应用性好等优点,其主要缺点是不能满足对图像的所有部分都能较好增强,且算法难于应付自适应的图像增强。 随着各领域人们对高质量图像需求的不断增加,对图像色彩及图像中场景各部分细节要求越来越高,如何获取高质量图像以及如何将低质量退化图像进行增强以达到更好的应用目标需求,越来越成为研究者们关注的焦点,而带给人们更多视觉感知信息的彩色图像和具有更高图像细节质量的高动态范围图像带给人们更多的研究兴趣。而本文的研究也正是基于此,因此,本论文将着重从单一彩色图像增强和高动态范围成像两个方面进行研究。参考文献1.R.C.Gonzalez,R.E.Woods.Digital Image ProcessingM,Person Prentice Hall, New Jersey,20082.Y.B.Rao, L.T.Chen. A survey of video enhancement techniquesJ.International Journal on Electrical Engineering and Informatics, 2012, 3(1):71-993.饶云波. 夜间视频增强的关键技术研究D. 成都:电子科技大学,20124.P. Ganzalop, M. Jesus. Wavelet-based image fusion tutorialJ. Pattern Recognition. 2004, 8(37):1855-18725.S. Li, B. Yang. Multifocus image fusion by combining curvelet and wavelet transformJ.Pattern Recognition Letters, 2008, 29: 295-3016.A. Borsdorf, R. Raupach, T. Flohr, et al. Wavelet based noise reduction in CT-images usingcorrelation analysisJ. IEEE Transactions on Medical Imaging, 2008, 27(12): 1685-17037.K. Tsai, J. W. Ma, D. T. Ye, et al. Curvelet processing of MRI for local image enhancementJ.International Journal for Numerical Methods in Biomedical Engineering, 2012, 28 (6): 661-670 8.M. H. Asmare, V. S. Asirvadam, L. Iznita. Image enhancement by fusion in contourlettransformJ. International Journal on ElectricalEngineering and Informatics, 2010, 2(1): 29-42 9.E. Reinhard, G. Ward, S. Pattanaik, et al. High Dynamic Range Imaging: Acquisition, Display and Image-based LightingM(2nd Edition). Morgan Kau_man, 2010 10.T. Stathaki. Image Fusion Algorithms and ApplicationsM. Academic Press is an imprint of Elsevier, 2008 11.A. Toet. Natural color mapping for multi band night-vision imageryJ. Information Fusion,2003, 4: 155-166 12.P. Shah, B. C. S. Reddy, S. N. Merchant, et al. Context enhancement to reveal a camouflaged target and to assist target localization by fusion multispectral surveillance videosJ. Signal,Image and Video Processing, 2011, 8: 1-16 13.C. Pohl, J. L. V. Genderen. Multisensor image fusion in remote sensing: concepts, methods and applicationsJ. International Journal of Remote Sensing, 1998, 19(5): 823-854 14.M. Li, W. Cai, Z. Tan. A region-based multi-sensor image fusion scheme using pulse-coupledneural networkJ. Pattern Recognition Letters, 2006, 27(16): 1948-1956 15.T. Mertens, J. Kautz, T. V. Reeth. Exposure fusion: a simple and practical alternative to high dynamic range photograp
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国甜八宝数据监测报告
- 快递考试题目及答案
- 空中乘务考试题及答案
- 果蔬坚果加工工岗位操作技能考核试卷及答案
- 炼钢准备工专项考核试卷及答案
- 2025年中国多功能平板跑步机数据监测研究报告
- 矿用发电车操作工基础考核试卷及答案
- 综合布线装维员上岗考核试卷及答案
- 精神控制考试题及答案
- 金蝶软件考试题及答案
- 桩基础平法施工图(平法施工图识读)
- GB/T 9113-2010整体钢制管法兰
- GB/T 23338-2018内燃机增压空气冷却器技术条件
- 癫痫的急救与护理课件
- 海姆立克急救法完整版本课件
- 国家地表水环境质量监测网采测分离实施方案课件
- 控压钻井技术及实践培训讲义工艺课件
- 厚度仪点检表
- 北京市水利工程维修养护定额
- 自然拼读法在小学英语教学中的应用的实践研究
- 无领导小组面试评分表模板
评论
0/150
提交评论