高考数学教学论文 中有关不等式的考点分析及解题策略(通用)_第1页
高考数学教学论文 中有关不等式的考点分析及解题策略(通用)_第2页
高考数学教学论文 中有关不等式的考点分析及解题策略(通用)_第3页
高考数学教学论文 中有关不等式的考点分析及解题策略(通用)_第4页
高考数学教学论文 中有关不等式的考点分析及解题策略(通用)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高考中有关不等式的考点分析及解题策略不等式是高中数学的重要内容,是分析、解决有关数学问题的基础与工具在近年来的高考中,有关不等式的试题都占有较大的比重(涉及不等式的试题一般占总分的12%左右), 考查内容中不仅有不等式的基础知识、基本技能、基本思想方法,而且注重考查逻辑思维能力、运算能力以及分析问题和解决问题的综合数学能力.有关不等式的题目多数是与函数、方程、数列、三角、解析几何、立体几何及实际问题相互交叉和渗透,而且充分体现出不等式的知识网络所具有的极强的辐射作用。不等式试题高考中形式活泼且多种多样,既有选择题、填空题,又有解答题。考试大纲要求:1、 理解不等式的性质及其证明;2、 掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用;3、 掌握分析法、综合法、比较法证明简单的不等式;4、 掌握简单不等式的解法。 下面结合08年典型考题谈谈有关不等式问题的考点分析及解题策略。一. 选择及填空题中考点分析及解题策略【典型考题】1.(天津)已知函数,则不等式的解集是(A)A B. C. D. 2.(江西)若,则下列代数式中值最大的是(A)A B C D 3.(陕西)“”是“对任意的正数,”的( A )A充分不必要条件 B必要不充分条件C充要条件D既不充分也不必要条件4.(浙江)已知,b都是实数,那么“”是“b”的(D)A. 充分而不必要条件 B. 必要而不充分条件C. 充分必要条件 D. 既不充分也不必要条件5.(海南)已知,则使得都成立的取值范围是( B )A.(0,) B. (0,)C. (0,) D. (0,)6.(上海)不等式的解集是(0,2)7.(山东)若不等式3x-b4的解集中的整数有且仅有1,2,3,则b的取值范围 。(5,7).8.(江苏)已知,则的最小值 39.(江西)不等式的解集为 10.(全国)设奇函数在上为增函数,且,则不等式的解集为( D )ABCD【考点分析及解题策略】从以上例子可以看出,选择题、填空题主要考查不等式的基本性质、解简单不等式、基本不等式应用、简单转化求参数范围、比较大小等,同时注意把不等式问题的考查与函数等问题的考查相结合。这类题目多属于基础问题,难度不大。解题策略可按解答选择填空题的一般策略进行,如用: 直接法、特殊化法、排除法、验证法、数形结合法等。选择方法时要注意合理、准确、快速,不要“小题大做”,应当思维灵活,不拘一格,以提高解题效率。二. 解答题中考点分析及解题策略【典型考题】1(安徽)设数列满足为实数()证明:对任意成立的充分必要条件是;()设,证明:;()设,证明:(1) 必要性 : , 又 ,即充分性 :设,对用数学归纳法证明 当时,.假设 则,且,由数学归纳法知对所有成立 (2) 设 ,当时,结论成立 当 时, ,由(1)知,所以 且 (3) 设 ,当时,结论成立 当时,由(2)知 2(全国1)设函数数列满足,()证明:函数在区间是增函数;()证明:;()设,整数证明:解析:()证明:,故函数在区间(0,1)上是增函数;()证明:(用数学归纳法)(i)当n=1时,由函数在区间是增函数,且函数在处连续,则在区间是增函数,即成立;()假设当时,成立,即那么当时,由在区间是增函数,得.而,则,也就是说当时,也成立;根据()、()可得对任意的正整数,恒成立. ()证明:由可得1, 若存在某满足,则由知:2, 若对任意都有,则,即成立.3(全国2)设数列的前项和为已知,()设,求数列的通项公式;()若,求的取值范围解析:()依题意,即,由此得4分因此,所求通项公式为,6分()由知,于是,当时,当时,又综上,所求的的取值范围是12分4(山东)已知函数其中nN*,a为常数.()当n=2时,求函数f(x)的极值;()当a=1时,证明:对任意的正整数n,当x2时,有f(x)x-1.解析:()由已知得函数f(x)的定义域为x|x1, 当n=2时, 所以 (1)当a0时,由f(x)=0得1,1,此时 f(x)=.当x(1,x1)时,f(x)0,f(x)单调递减;当x(x1+)时,f(x)0, f(x)单调递增.(2)当a0时,f(x)0恒成立,所以f(x)无极值.综上所述,n=2时,当a0时,f(x)在处取得极小值,极小值为当a0时,f(x)无极值.()证法一:因为a=1,所以 当n为偶数时,令则 g(x)=1+0(x2).所以当x2,+时,g(x)单调递增,又 g(2)=0因此g(2)=0恒成立, 所以f(x)x-1成立.当n为奇数时, 要证x-1,由于0,所以只需证ln(x-1) x-1, 令 h(x)=x-1-ln(x-1), 则 h(x)=1-0(x2), 所以 当x2,+时,单调递增,又h(2)=10, 所以当x2时,恒有h(x) 0,即ln(x-1)x-1命题成立.综上所述,结论成立.证法二:当a=1时,当x2,时,对任意的正整数n,恒有1,故只需证明1+ln(x-1) x-1.令则当x2时,0,故h(x)在上单调递增,因此当x2时,h(x)h(2)=0,即1+ln(x-1) x-1成立.故当x2时,有x-1.即f(x)x-1.5.( 上海)已知函数f(x)2x若f(x)2,求x的值若2t f(2t)+m f(t)0对于t1,2恒成立,求实数m的取值范围解析:(1)当时,;当时,由条件可知,即解得 (2)当时,即,故的取值范围是6.(江苏)设函数,若对于任意的都有成立,则实数的值为 【解析】本小题考查函数单调性的综合运用若x0,则不论取何值,0显然成立;当x0 即时,0可化为,设,则, 所以 在区间上单调递增,在区间上单调递减,因此,从而4;当x0 即时,0可化为, 在区间上单调递增,因此,从而4,综上4【考点分析及解题策略】从以上例子可以看出, 今年高考中有关不等式的解答题主要考查的有证明不等式、含参数的不等式恒成立问题、最值型综合题以及实际应用题等.试题寓不等式的证明、解不等式、求参数范围于函数、数列、几何等问题之中,并有机融合、交互渗透,知识覆盖面广、综合性强、思维力度大、能力要求高,这类问题也成为考查数学思想方法、数学能力及素质的主阵地。此类题目多属于中档题甚至是难题。解答策略:(1)证明不等式时要注意化归思想的应用,其过程是一个把已知条件向要证结论的一个转化过程,变形转化时要注意通过对已知条件和要证结论的分析、比较,逐步缩小差异,探寻解决问题的思路和方法,要做到有的放矢!要注意证明不等式的基本方法的应用,如:比较法、分析法、综合法、放缩法、数学归纳法、函数单调性法等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论