




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考数学总复习:随机变量及其分布知识网络目标认知考试大纲要求:1. 理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性.2. 理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差, 并能解决一些实际问题.3. 理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.4. 理解超几何分布及其导出过程,并能进行简单的应用.重点:离散型随机变量及其分布列的概念,离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题.难点:正确写出离散型随机变量的分布列,求出均值与方差。知识要点梳理知识点一:离散型随机变量及其分布列1离散型随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量,随机变量常用希腊字母等表示。2离散型随机变量对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量;若是随机变量,其中a,b是常数,则也是随机变量,并且不改变其属性(离散型、连续型)。3离散性随机变量的分布列:设离散型随机变量可能取得值为x1,x2,x3,若取每一个值xi(i=1,2,)的概率为,则称表x1x2xiPP1P2Pi为随机变量的概率分布,简称的分布列. 4离散型随机变量的分布列都具有下面两个性质:(1)pi0,i=1,2;(2)P1+P2+=1知识点二:离散型随机变量的二点分布如果随机变量X的分布列为10P称离散型随机变量服从参数为的两点分布。知识点三:离散型随机变量的二项分布在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数是一个随机变量,如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是,于是得到随机变量的概率分布如下:01KNp由于恰好是二项展开式中的各项的值,所以称这样的随机变量服从二项分布,记作,其中n,p为参数,并记若,则,。知识点四:离散型随机变量的几何分布独立重复试验中,某个事件第一次发生时所作试验的次数也是一个正整数的离散型随机变量。表示在第k次独立重复试验时该事件第一次发生, 如果把第k次重复试验时事件A发生记作Ak,事件A不发生记作且那么离散型随机变量的概率分布是:123kPP(1-P)P(1-P)2P(1-P)k-1P称这样的随机变量服从几何分布,记作其中若随机变量服从几何分布,则,知识点五:超几何分布在含M件次品的N件产品中,任取n件,其中恰有X件次品数,则事件发生的概率为:,其中,称分布列01为超几何分布列。离散型随机变量X服从超几何分布。若随机变量X服从超几何分布,则,。知识点六:离散型随机变量的期望与方差1、离散型随机变量的期望:一般地,若离散型随机变量的概率分布为x1x2xnpp1p2pn则称的数学期望,简称期望,又称为平均数、均值。数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平或集中位置,若(a,b是常数),。二项分布的期望:若离散型随机变量服从二项分布,即几何分布的期望:若离散型随机变量服从几何分布,且2、离散型随机变量的方差:对于离散型随机变量,如果它所有可能取的值是x1,x2,xn,,且取这些值的概率分别是p1,p2,pn,,那么,称为随机变量的均方差,简称为方差,式中的E是随机变量的期望。D的算术平方根叫做随机变量的标准差,记作。随机变量的方差与标准差都反映了随机变量取值的稳定与波动、集中与离散的程度。方差越大数据波动越大。若(a,b是常数),是随机变量,则D(a+b)=a2D。二项分布的方差:若离散型随机变量服从二项分布,即几何分布的方差:若离散型随机变量服从几何分布,且规律方法指导由于理科学习了计数原理和条件概率以及相互独立事件的概率,在概率的计算上理科出题的范围非常广,要求会用计数原理和排列、组合的知识计算随机事件所含的基本事件数及事件发生的概率. 高考中经常把概率的计算问题放在离散型随机变量的分布列中考查. 对于离散型随机变量的均值与方差特别要注意几个基本概率模型.考查离散型随机变量的分布列以及均值与方差问题是高考中的热点问题.求离散型随机变量的分布列,首先要根据具体情况确定的取值情况,然后利用排列、组合与概率知识求出取各个值的概率即必须解决好两个问题,一是求出的所有取值,二是求出取每一个值时的概率,同时按规范形式写出分布列,并用分布列的性质验证.求离散型随机变量的均值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 三级护理案例分享
- 区社工站工作总结汇报
- 印刷品生产线项目技术方案
- 房屋建筑施工设备配置与管理方案
- 2025年丙肝考试题及答案
- 交换器营销服务方案
- xx市污水收集处理设施体系化建设工程建筑工程方案
- 旅行社门票营销方案
- 法务咨询债务优化方案
- 山西大学营销方案模板
- 高二物理第一次月考卷【测试范围:第11~12章】(考试版A3)
- 团校考试试题及答案浙江
- 2025-2026学年湘美版(2024)小学美术二年级上册(全册)教学设计(附目录P208)
- 法国方言政策的沿袭与变革
- 机关事业单位工人《汽车驾驶员高级、技师》考试题(附答案)
- 烟酒店经营许可合同模板
- GB/T 1770-2008涂膜、腻子膜打磨性测定法
- 粮库监理工作流程
- 输血申请单规范PDCA
- 污水处理技术及工艺介绍课件
- 第17课-我是浙江人课件
评论
0/150
提交评论