一般数列的求和方法 新课标 人教B版_第1页
一般数列的求和方法 新课标 人教B版_第2页
一般数列的求和方法 新课标 人教B版_第3页
一般数列的求和方法 新课标 人教B版_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一般数列的求和方法对于等差数列和等比数列而言,我们采用倒序相加法和错位相减法来求他们的前项和,而对于一般地数列我们可以从求等差数列和等比数列的前项和的方法受到启发,得到下面的几种方法,这些方法是我们求一般数列的通法,只要大家能够理解这些方法的适用范围,并且根据这些方法对新出现的数列都可以化为下面的形式,那么数列的求和问题就不会太难。现将这些方法总结如下:一 公式法对这些比较简单常见的数列,我们可以记下他们的前项和,在题目里我们可以直接利用它们。(1) (2) (3) (4) (5) (6) 例1 求的和。解: 由等差数列的求和公式 得二 分组结合法(裂项法)若数列的通项公式为,其中、中一个是等差数列,另一个是等比数列,求和时一般利用分组结合法。例 2 求数列的前项的和。解:因为 所以 三 拆项相消法若一个数列的每一项都可以化为两项之差,并且前一项的减数恰与后一项的被减数相同,求和时中间项互相抵消,这种数列求和的方法就是裂项相消法。例 3 ,求。解:因为 所以 常见的拆项公式有:(1) (2) (3) (4) (5) 四 错位相减法若数列的通项公式,其中、中一个是等差数列,一个是等比数列求和时一般可在已知和式的两边都乘以组成这个数列的等比数列的公比,然后再将所得新和式与原和式相减,转化为同倍数的等比数列求和。这种方法叫错位相减法。例4 求数列的前项的和。解: 两式相减,得 所以 五 倒序相加法如等差数列的前项和的求法就是采用这种办法,即先倒序书写这个数列,然后再把原数列和倒写后的数列对应项相加可以求得原数列的前项和。六 数学归纳法在06年的高考题中,出现了求数列的通项公式,其中要先求出该数列前项和,然后根据其前项和来求其通项公式。在求前项和时没有用到前面我们所提到的几种方法,而是根据归纳猜想验证即数学归纳法来得到的。例5 (06年全国高考理科22题)设数列an的前n项和为Sn,且方程x2anxan0有一根为Sn1,n1,2,3,()求a1,a2;()an的通项公式。解:()当n1时,x2a1xa10有一根为S11a11,于是(a11)2a1(a11)a10,解得a1当n2时,x2a2xa20有一根为S21a2,于是(a2)2a2(a2)a20,解得a1()由题设(Sn1)2an(Sn1)an0,即Sn22Sn1anSn0当n2时,anSnSn1,代入上式得Sn1Sn2Sn10由()知S1a1,S2a1a2由可得S3由此猜想Sn,n1,2,3,下面用数学归纳法证明这个结论(i)n1时已知结论成立(ii)假设nk时结论成立,即Sk,当nk1时,由得Sk1,即Sk1,故nk1时结论也成立综上,由(i)、(ii)可知Sn对所有正整数n都成立于是当n2时,anSnSn1,又n1时,a1,所以an的通项公式a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论