




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.2.2 直线的两点式方程【教学目标】(1)掌握直线方程的两点的形式特点及适用范围;(2)了解直线方程截距式的形式特点及适用范围。【教学重难点】重点:直线方程两点式。难点:两点式推导过程的理解。【教学过程】(一)情景导入、展示目标。思考1:由一个点和斜率可以确定一条直线,还有别的条件可以确定一条直线吗?问题: 已知直线l过A(3,-5)和B(-2,5),求直线l的方程解:直线l过点A(3,-5)和B(-2,5)将A(3,-5),k=-2代入点斜式,得y(5) =2 ( x3 ) 即 2x + y 1 = 0(二)预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。(三)合作探究、精讲点拨。思考2:设直线l经过两点P1(x1,y1),P2(x2,y2),其中x1x2,y1y2,则直线l斜率是什么?结合点斜式直线l的方程如何?直线方程的两点式经过直线上两点P1(x1,y1), P2(x2,y2)(其中x1x2, y1y2 )的直线方程叫做直线的两点式方程,简称两点式。讨论:1、两点式适用范围是什么?答:当直线没有斜率或斜率为0时,不能用2、若点中有,或,此时这两点的直线方程是什么?例1:求过两点的直线的两点式方程,并转化成点斜式.分析:直接代入两点式方程解: 点斜式(y-1)=-4(x-2)练习:教材P97面1题例2:已知直线与轴的交点为A(a,0),与轴的交点为B(0,b),其中a0,b0求的方程解析:说明(1)直线与x轴的交点(a,0)的横坐标a叫做直线在x轴的截距,此时直线在y轴的截距是b; 当直线不经过原点时,其方程可以化为 , 方程称为直线的截距式方程,其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.点评:截距式适用于横、纵截距都存在且都不为0的直线变式:1.求过点P(2, 3),并且在两坐标轴上的截距相等的直线的方程。上题中改为求截距的绝对值相等的直线方程,结果如何?例3:已知三角形的三个顶点A(5,0),B(3,3),C(0,2)求BC所在直线的方程,以及该边上中线所在直线的方程。解:将B,C两点代入两点式,得整理,得:5x3y60,这就是直线BC的方程。设BC的中点为M(x,y),由中点坐标公式,得M(,即M()中线AM所在的直线方程为:,整理,得:x13y50点评:其中考察了线段中点坐标公式,非常的常用,引起重视。变式:求过点P(2, 3),并且在x轴上的截距是在y轴上的截距2倍的直线的方程。(四)反馈测试导学案当堂检测 总结反思、共同提高我们已经学习了直线的两点式方程,那么,直线方程之间的区别与联系是什么?在下一节课我们一起学习直线方程的最后一种形式。这节课后大家可以先预习这一部分,并完成本节的课后练习及课后延伸拓展作业。【板书设计】一、直线的两点式方程的定义,形式二、探究问题三、典例例一例二例三(学生爬黑板展示变式练习)【作业布置】 导学案课后练习与提高3.2.1 直线的两点式方程导学案课前预习学案一、 预习目标通过预习同学们知道点斜式和两点式之间有很密切的联系,用点斜式来解决两点确定一条直线这个问题。如何得到的呢?特殊化后又得到另一种形式,截距式。明确他们的适用范围?二、 预习内容 思考1:由一个点和斜率可以确定一条直线,还有别的条件可以确定一条直线吗?问题: 已知直线l过A(3,-5)和B(-2,5),求直线l的方程解:上述直线方程在x轴,y轴上的 截距分别是什么?讨论回答三、提出疑惑疑惑点疑惑内容课内探究学案一、学习目标(1)掌握直线方程的两点的形式特点及适用范围;(2)了解直线方程截距式的形式特点及适用范围。学习重点:直线方程两点式。学习难点:两点式推导过程的理解。二、学习过程(自主学习、合作探究、精讲点拨、有效训练)思考2:设直线l经过两点P1(x1,y1),P2(x2,y2),其中x1x2,y1y2,则直线l斜率是什么?结合点斜式直线l的方程如何?讨论:1、两点式适用范围是什么?答: 2、若点中有,或,此时这两点的直线方程是什么?例1:求过两点的直线的两点式方程,并转化成点斜式.练习:教材P97面1题例2:已知直线与轴的交点为A(a,0),与轴的交点为B(0,b),其中a0,b0求的方程解析:说明(1)直线与x轴的交点(a,0)的横坐标a叫做直线在x轴的截距,此时直线在y轴的截距是b; 解:变式:1.求过点P(2, 3),并且在两坐标轴上的截距相等的直线的方程。上题中改为求截距的绝对值相等的直线方程,结果如何?2.求过点P(2, 3),并且在x轴上的截距是在y轴上的截距2倍的直线的方程。例3:已知三角形的三个顶点A(5,0),B(3,3),C(0,2)求BC所在直线的方程,以及该边上中线所在直线的方程。反思总结直线的两点式是怎么来的,它的适用范围是什么?经过特殊化后得到截距式,它的几何意义是什么。什么是截距。当堂检测1.2.求经过点P(-5,4),且在两坐标轴上的截距相等的直线方程.3.已知直线l经过点P(1,2),并且点A(2,3)和点 B(4,-5)到直线l的距离相等,求直线l的方程.4过(1,2)并且在两个坐标轴上的截距的绝对值相等的直线有几条?课后练习与提高1、已知三角形ABC的顶点坐标为A(-1,5)、B(-2,-1)、C(4,3),M是BC边上的中点。(1)求AB边所在的直线方程;(2)求中线AM的长(3)求AB边的高所在直线方程。答案; 1、.解:(1)由两点式写方程得 ,即 6x-y+1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 分布式光伏发电并网系统容量规划方案
- 城区错接混接改造及雨污水管网项目建设工程方案
- 重难点解析人教版八年级上册物理物态变化《升华和凝华》专题训练试题(含解析)
- Wnt-C59-Standard-生命科学试剂-MCE
- 达标测试人教版八年级上册物理物态变化《熔化和凝固》专题练习试卷(含答案详解版)
- 基于分子催化剂-半导体复合体系的芳烃光催化氟烷基化反应研究
- 基于SWMM-MIKE 21耦合模型对河道滞留区的治理优化
- 建筑结构优化设计与实施方案
- 公路路基加固技术方案
- 难点详解人教版八年级上册物理物态变化《温度》专题练习练习题(含答案详解)
- 2025-2026学年江苏省徐州市八年级(上)第一次月考数学试卷(含答案)
- 2025至2030中国航空制造业行业发展现状及细分市场及有效策略与实施路径评估报告
- (2025年)社区工作者考试真题库附答案
- 流延膜设备安全操作培训课件
- 专题1:匀变速直线运动的重要结论+课件-2025-2026学年高一上学期物理人教(2019)必修第一册
- 医学基础期末试题及答案
- 2025年放射诊疗培训试题及答案
- 2025年平安网格测试题库及答案
- 重症胰腺炎课件教学
- 3.2营造清朗空间教学设计 2025-2026学年统编版道德与法治八年级上册
- 烫伤急救课件
评论
0/150
提交评论