




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基本初等函数的习题课编制人:陈纪刚 审核人:张志勇 使用时间:三、知识点回顾1.指数函数的图像与性质:a10a1图象性质(1)定义域: (2)值域: (3)过定点: (4)在 R上是 函数(4)在R上是 函数2对数函数的图像性质0a1图象定义域值域单调性过定点y0时_3.幂函数的性质幂函数图象定义域值域奇偶性单调性公共点四、预习自测1设,则满足的的值为 2下列函数中,既是奇函数,又在定义域内为减函数的是 ( ) 3不论为何正实数,函数的图象一定通过一定点,则该定点的坐标是_4如果那么下列不等式中正确的是( ) 5已知函数(其中)的图象如下面右图所示,则函数的图象是( )五、典型例题:例1已知函数(1)求函数的定义域;(2)求使的的取值范围。例2已知函数(1)求的定义域; (2)求使的的取值范围。(3) 并判断其奇偶性;例3已知是奇函数,(1)求函数的定义域(2)求常数m的值; 例4已知定义在R上的奇函数f(x),且当x时,. (1)求f(x)在R上的解析式;(2)判断f(x)在的单调性并用定义证明.六、当堂检测:1.幂函数( )在是减函数,且,则= 2函数,满足的的取值范围( )AB C D 3已知,则下列正确的是( )A奇函数,在R上为增函数 B偶函数,在R上为增函数 C奇函数,在R上为减函数 D偶函数,在R上为减函数七、课后作业1函数的定义域( )A B C D2设指数函数,则下列等式中不正确的是( )Af(x+y)=f(x)f(y) B C D310下列关系式中,成立的是( )AB C D4当时,函数和的图象只可能是( )5.函数的图像关于( )A、轴对称 B、轴对称 C、原点对称 D、直线对称6.已知函数(a1).(1)判断函数f (x)的奇偶性;(2)证明f (x)在(,+)上是增函数.答案预习自测 3 C (1,- 1) A A例1解:(1)由题意得()x10()x 1=()0解得x log3 1所以,即解得x1,所以x 的取值范围是(,1)例2 解:(1)由题意得解得1x0即loga(1x)loga(1+x)当a1时,解得x(1,0)当0a1时,x的取值范围是(1,0);当0a1时,x的取值范围是(0,1)(3)f(x)的定义域 (1,1)关于原点对称,以及f(x)= loga(1+x)loga(1x)= (loga(1x) loga(1+x) = f(x)所以f(x)是奇函数。例3解:(1)由题意得3x10,即x0所以f(x)的定义域为(,0)(0,+)(2)f(x)是奇函数f(1)=f(1)即+m=(+m)解得m=1例4 解:(1)由于奇函数f(x)的定义域为R,所以x=0时,f(x)=0当x0时,f(x)=f(x)= log2(2x1)所以(2)判断: f(x)是(0,+)的增函数。证明:当x(0,+)时,f(x)=log2(2x1)设x1,x2(0,+),当x1x2时,2x12x2,(指数函数y=2x为增函数)所以2x110,所以2x11201=0,即02x112x21所以log2(2x11) log2(2x21) (用对数函数y=log2x为增函数)即f(x1)f(x2)所以f(x)是(0,+)的增函数。当堂检测: 1.解:由题意得,解得m= 1 2 解:由题意得或解得x1 。选 D 1. A课后作业:DDAAC6.解:(1) 由ax+10,求得定义域为R,定义域关于原点对称。又所以f(x)是奇函数。(2)设x1,x2(,+),当x1x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司新产品下线节目策划方案
- 公司效能提升年活动方案
- 公司气球派对活动方案
- 公司新年开工活动方案
- 公司生日福利活动方案
- 公司组织避暑活动方案
- 公司搬新办公室活动方案
- 公司节目展示策划方案
- 公司活动烧烤策划方案
- 公司盈利模式策划方案
- 诊所院内感染管理制度
- 2025-2030年中国经颅磁刺激仪行业市场现状供需分析及投资评估规划分析研究报告
- 2025年江苏高考历史真题(解析版)
- 广西来宾市2023-2024学年高二下学期7月期末考试物理试题(含答案)
- 会员月底抽奖活动方案
- 2025年互联网医疗平安好医生阿里健康京东健康对比分析报告
- 攀枝花市仁和区社会招考社区工作者考试真题2024
- 2025年上海杨浦区七下英语期末达标检测试题含答案
- 老年外科患者围手术期营养支持中国专家共识(2024)解读
- 临床肘关节损伤影像诊断
- 2025家庭装饰装修合同范本
评论
0/150
提交评论