



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1双曲线y21的离心率是()A. B.C. D.解析:选B.a24,b21,c25.e.2双曲线1的焦点到渐近线的距离为()A2 B2C. D1解析:选A.双曲线1的焦点为(4,0)、(4,0)渐近线方程为yx.由双曲线的对称性可知,任一焦点到任一渐近线的距离相等d2.3(2020年抚顺市六校联考)若双曲线1(a0,b0)的离心率是2,则的最小值为()A. B.C2 D1解析:选A.由e2得,2,从而ba0,所以a22,当且仅当a,即a时,“”成立故选A.4若双曲线1(b0)的渐近线方程为yx,则b等于_解析:双曲线1的渐近线方程为0,即yx(b0),b1.答案:1一、选择题1下面双曲线中有相同离心率,相同渐近线的是()A.y21,1B.y21,y21Cy21,x21D.y21,1解析:选A.B中渐近线相同但e不同;C中e相同,渐近线不同;D中e不同,渐近线相同故选A.2若双曲线1(a0)的离心率为2,则a等于()A2 B.C. D1解析:选D.c,2,a1.3双曲线与椭圆4x2y264有公共的焦点,它们的离心率互为倒数,则双曲线方程为()Ay23x236 Bx23y236C3y2x236 D3x2y236解析:选A.椭圆4x2y264即1,焦点为(0,4),离心率为,所以双曲线的焦点在y轴上,c4,e,所以a6,b212,所以双曲线方程为y23x236.4(2020年高考湖南卷)设双曲线1(a0)的渐近线方程为3x2y0,则a的值为()A4 B3C2 D1解析:选C.渐近线方程可化为yx.双曲线的焦点在x轴上,2,解得a2.由题意知a0,a2.5(2020年高考浙江卷)已知椭圆C1:1(ab0)与双曲线C2:x21有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点,若C1恰好将线段AB三等分,则()Aa2 Ba213Cb2 Db22解析:选C.由题意知,a2b25,因此椭圆方程为(a25)x2a2y25a2a40,双曲线的一条渐近线方程为y2x,联立方程消去y,得(5a25)x25a2a40,直线截椭圆的弦长d2a,解得a2,b2.6(2020年高考山东卷)已知双曲线1(a0,b0)的两条渐近线均和圆C:x2y26x50相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为()A.1 B.1C.1 D.1解析:选A.双曲线1的渐近线方程为yx,圆C的标准方程为(x3)2y24,圆心为C(3,0)又渐近线方程与圆C相切,即直线bxay0与圆C相切,2,5b24a2.又1的右焦点F2(,0)为圆心C(3,0),a2b29.由得a25,b24.双曲线的标准方程为1.二、填空题7若双曲线1的渐近线方程为yx,则双曲线的焦点坐标是_解析:由渐近线方程为yxx,得m3,c,且焦点在x轴上答案:(,0)8已知双曲线1的离心率为2,焦点与椭圆1的焦点相同,那么双曲线的焦点坐标为_;渐近线方程为_解析:双曲线的焦点与椭圆的焦点相同,c4.e2,a2,b212,b2.焦点在x轴上,焦点坐标为(4,0),渐近线方程为yx,即yx,化为一般式为xy0.答案:(4,0)xy09(2020年高考辽宁卷)已知点(2,3)在双曲线C:1(a0,b0)上,C的焦距为4,则它的离心率为_解析:由题意知1,c2a2b24得a1,b,e2.答案:2三、解答题10求以椭圆1的两个顶点为焦点,以椭圆的焦点为顶点的双曲线方程,并求此双曲线的实轴长、虚轴长、离心率及渐近线方程解:椭圆的焦点F1(,0),F2(,0),即为双曲线的顶点双曲线的顶点和焦点在同一直线上,双曲线的焦点应为椭圆长轴的端点A1(4,0),A2(4,0),所以c4,a,b3,故所求双曲线的方程为1.实轴长为2a2,虚轴长为2b6,离心率e,渐近线方程为yx.11求中心在原点,对称轴为坐标轴,且满足下列条件的双曲线方程:(1)双曲线C的右焦点为(2,0),右顶点为(,0);(2)双曲线过点(3,9),离心率e.解:(1)设双曲线方程为1(a0,b0)由已知得a,c2,再由a2b2c2,得b21.故双曲线C的方程为y21.(2)e2,得,设a29k(k0),则c210k,b2c2a2k.于是,设所求双曲线方程为1或1把(3,9)代入,得k161与k0矛盾,无解;把(3,9)代入,得k9,故所求双曲线方程为1.12已知双曲线C:2x2y22与点P(1,2)(1)求过点P(1,2)的直线l的斜率k的取值范围,使l与C只有一个交点;(2)是否存在过点P的弦AB,使AB的中点为P?解:(1)设直线l的方程为y2k(x1),代入双曲线C的方程,整理得(2k2)x22(k22k)xk24k60(*)当2k20,即k时,直线与双曲线的渐近线平行,此时只有一个交点当2k20时,令0,得k.此时只有一个公共点又点(1,2)与双曲线的右顶点(1,0)在直线x1上,而x1为双曲线的一条切线当k不存在时,直线与双曲线只有一个公共点综上所述,当k或k或k不存
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 盐城幼师考编试题及答案
- Z世代消费心理洞察:2025年新消费品牌情感价值塑造策略报告
- 天然气勘探开发技术创新与市场前景分析报告
- 能源与资源行业:能源行业供应链风险管理研究报告
- 班组自查报告
- 新消法考试题及答案
- 江苏省苏州市昆山市、太仓市2025年第二学期普通高中半期考试初三数学试题含解析
- 四川省广元市重点中学2024-2025学年初三(普通班)下学期期末考试生物试题试卷含解析
- 安全管理与施工效率的关系试题及答案
- 木工画图考试题及答案
- 基于深度学习的图像修复算法研究
- 隐私与保密信息管理制度
- 《隧道防火保护板系统技术规程》
- 2025年安徽黄山旅游集团招聘笔试参考题库含答案解析
- 中铜国际贸易集团有限公司招聘笔试冲刺题2025
- 商演服务合同
- 《建筑采光分析》课件
- 海洋机器人与人工智能知到智慧树章节测试课后答案2024年秋哈尔滨工程大学
- 上海市境内旅游合同 示范文本(2013版)
- 钢构制品加工协议
- “煎炒烹炸”与中药疗效(安徽中医药大学)知道智慧树章节答案
评论
0/150
提交评论