



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
章节与课题数学归纳法(2)课时安排1课时使用人使用日期或周次本课时学习目标或学习任务1.了解归纳法的意义,培养学生观察、归纳、发现的能力;2.了解数学归纳法的原理,能以递推思想作指导,理解数学归纳法的操作步骤;3.抽象思维和概括能力进一步得到提高本课时重点难点或学习建议借助具体实例了解数学归纳的基本思想,进一步掌握它的基本步骤,运用它证明一些与正整数n(n取无限多个值)有关的数学命题本课时教学资源的使用导学案学 习 过 程数学归纳法(2)(1) 复习回顾一般地,证明一个与正整数n有关的命题,可按下列步骤进行:(1)(归纳奠基)_;(2)(归纳递推)_这种方法就是_(2) 例题剖析例1、用数学归纳法证明:能被6整除特别提示:数学归纳法证题的关键是“一凑假设,二凑结论”,在证题的过程中,归纳推理一定要起到条件的作用,即证明n=k+1成立时必须用到归纳递推这一条件。例2、已知数列 计算,根据计算的结果,猜想的表达式,并用数学归纳法进行证明。例3、是否存在常数使得等式对一切正整数都成立,并证明你的结论。点拨:对这种类型的题目,一般先利用n的特殊值,探求出待定系数,然后用数学归纳法证明它对一切正整数n都成立。例4、 比较 2n与 n2 (nN*)的大小。(三)课堂练习1.用数学归纳法证明:1+2+22+2n-1=2n-1 (nN*)2.证明:62n11能被7整除(nN*)(4) 课堂小结1、数学归纳法的基本思想:在可靠的基础上利用命题本身具有传递性,运用“有限”的手段来解决“无限”的问题2、数学归纳法的核心:在验证命题n=n0正确的基础上,证明命题具有传递性,而第二步实际上是以一次逻辑的推理代替了无限的验证过程.所以说数学归纳法是一种合理、切实可行的科学证题方法,实现了有限到无限的飞跃。3、用数学归纳法证明恒等式的步骤及注意事项:明确首取值n0并验证真假。(必不可少)“假设n=k时命题正确”并写出命题形式。分析“n=k+1时”命题是什么,并找出与“n=k”时命题形式的差别。弄清左端应增加的项。明确等式左端变形目标,掌握恒等式变形常用的方法:乘法公式、因式分解、添拆项、配方等,用上假设。(5) 课后作业1用数学归纳法证明等式123(n3) (nN*),验证n1时,左边应取的项是_2用数学归纳法证明“2nn21对于nn0的自然数n都成立”时,第一步证明中的起始值n0应取_3已知数列an的前n项和为Sn,且a11,Snn2an (nN*)依次计算出S1,S2,S3,S4后,可猜想Sn的表达式为_4求证:(n2,nN*)5已知数列an中,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二、应用设计主题说课稿-2025-2026学年小学信息技术(信息科技)五年级上册电子工业版(宁夏)
- 2025年中国高纯硫酸钡行业市场分析及投资价值评估前景预测报告
- 口腔培训分享知识课件
- 2025年中国干式甜菜浆(颗粒)行业市场分析及投资价值评估前景预测报告
- 任务一 小果树 我来种说课稿-2023-2024学年小学劳动五年级下册浙教版《劳动》
- 2025年线下演出市场复苏后的演出市场品牌合作案例报告
- 实习安全知识培训课件
- 保养基础知识培训内容课件
- 3 当冲突发生时 第二课时 教学设计-道德与法治四年级下册统编版
- 2024秋五年级道德与法治上册 第三单元 我们的国土 我们的家园 6 我们神圣的国土说课稿 新人教版
- 2025浙江杭州市工会社会工作者招聘工作40人笔试模拟试题及答案解析
- 2025年镇江市中考英语试题卷(含答案及解析)
- 2025年云南省“爱我国防”知识竞赛考试题库150题(含答案)
- 《英语(第三版)》课件-Unit 3
- 2025年江西省高考生物试卷真题(含标准答案及解析)
- 2025-2026学年九年级英语上学期第一次月考 (江苏省连云港专用)原卷
- 2025年食品行业市场风险防范策略方案
- 电动消防排烟窗施工方案
- GB/T 25729-2010粮油机械撞击松粉机
- GB/T 13912-2020金属覆盖层钢铁制件热浸镀锌层技术要求及试验方法
- 2022年泰安市中考英语试题(含答案)
评论
0/150
提交评论